'Hot spot' for toxic harmful algal blooms discovered off Washington coast

January 30, 2009

A part of the Strait of Juan de Fuca, which separates Washington state from Canada's British Columbia, is a potential "hot spot" for toxic harmful algal blooms affecting the Washington and British Columbia coasts.

Marine scientists found that under certain conditions, toxic algal cells from an offshore "initiation site" break off and are transported to nearshore areas, where they may trigger harmful algal blooms that ultimately force the closure of Washington state shellfish beds along beaches.

"Knowing more about these blooms is critical for protecting human and ecosystem health," said David Garrison, director of the National Science Foundation (NSF)'s Biological Oceanography Program, which co-funded the research. "This research is a very successful step toward addressing harmful algal blooms in the U.S."

The study, conducted by a team of scientists from NOAA's Fisheries Service, San Francisco State University and the universities of Washington, Maine and Western Ontario, is part of the interagency Ecology and Oceanography of Harmful Algal Blooms Pacific Northwest Program.

"Understanding how and where harmful algal blooms originate will help provide early warnings to protect human health and reduce the impact of biotoxins on coastal shellfisheries," said Vera Trainer, lead author of a paper published in the January issue of the journal Limnology & Oceanography, and a scientist at the NOAA Fisheries Northwest Fisheries Science Center in Seattle.

Scientists noted that the Juan de Fuca eddy, a circular water mass rotating some 30 miles off the northern coast of Washington at the mouth of the Juan de Fuca Strait, frequently contained significant populations of the microscopic toxic alga, Pseudo-nitzschia.

Over the course of the five-year study, the researchers took thousands of measurements at sea and conducted experiments onboard research vessels and in their laboratories. They hoped to better understand the factors that initiate and sustain the growth of this toxic alga, and to determine why it produces a deadly biotoxin.

This naturally-produced biotoxin, domoic acid, can accumulate in shellfish, crabs and some fish.

By attacking the nervous system it can cause adverse health effects or death in birds, marine mammals and humans who consume affected marine species. Fishing communities may suffer severe economic losses as a result of closures of recreational, subsistence and commercial harvesting, and lost tourism.

The Limnology & Oceanography paper is titled "Variability of Pseudo-nitzschia and domoic acid in the Juan de Fuca eddy region and its adjacent shelves."

Source: National Science Foundation

Explore further: Reducing phosphorus runoff

Related Stories

Reducing phosphorus runoff

November 22, 2017

Throughout the United States, toxic algal blooms are wreaking havoc on bodies of water, causing pollution and having harmful effects on people, fish and marine mammals.

Cranberry growers tart on phosphorus

November 29, 2017

At Thanksgiving, many Americans look forward to eating roast turkey, pumpkin pie, and tangy red cranberries. To feed that appetite, cranberry farming is big business. In Massachusetts, cranberries are the most valuable food ...

Ribbed mussels could help improve urban water quality

November 22, 2017

Ribbed mussels can remove nitrogen and other excess nutrients from an urban estuary and could help improve water quality in other urban and coastal locations, according to a study in New York City's Bronx River. The findings, ...

Wireless handheld spectrometer transmits data to smartphone

November 8, 2017

Spectral images, which contain more color information than is obtainable with a typical camera, reveal characteristics of tissue and other biological samples that can't be seen by the naked eye. A new smartphone-compatible ...

Recommended for you

Scientists capture Earth's 'hum' on ocean floor

December 7, 2017

Scientists have long known earthquakes can cause the Earth to vibrate for extended periods of time. However, in 1998 a research team found the Earth also constantly generates a low-frequency vibrational signal in the absence ...

Birth of a storm in the Arabian Sea validates climate model

December 6, 2017

Researchers from Princeton University and the National Oceanic and Atmospheric Administration (NOAA) report in the journal Nature Climate Change that extreme cyclones that formed in the Arabian Sea for the first time in 2014 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.