Brain structure assists in immune response (Video)

January 28, 2009

For the first time, a team of researchers at the University of Pennsylvania School of Veterinary Medicine have imaged in real time the body's immune response to a parasitic infection in the brain.

The findings provide unexpected insights into how immune cells are regulated in the brain and have implications for treatment of any inflammatory condition that affects the brain.

Toxoplasma, a common parasite of humans, is found in the brains of approximately 30 percent of the population. Yet, because the brain lacks its own lymphatic system for localized immune response and the blood brain barrier limits antibody entry, researchers have found it provides unique challenges for the immune system to control local infection. Therefore, little is known about the processes by which T cells access the central nervous system during toxoplasma infection or how the immune system keeps this parasite in check.

The video will load shortly.
To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8+ Tcells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. Credit: Chris Hunter, University of Pennsylvania

In this Penn study, researchers aimed to better understand how the immune system is able to control infection in the brain. Using recent advances in two-photon microscopy that allow the visualization of T-cell populations in the brain, Chris Hunter's lab focused on the visualization of effector CD8+ T cells during toxoplasmic encephalitis.

"We found, quite unexpectedly, that the movement of infiltrating T cells was closely associated with an infection-induced reticular system of fibers in the brain," lead author Emma Wilson said. "These structures were not present in normal brain tissue."

"This observation suggests that in the brain, specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment and allow them to perform a search-and-destroy type of mission required to find abnormal cells or microbes with the brain," Hunter, professor and chair of the Department of Pathobiology at Penn Vet, said.

Source: University of Pennsylvania

Explore further: Turning brain cells into skin cells

Related Stories

Turning brain cells into skin cells

October 18, 2017

A new study published in Nature Communications reveals that it is possible to repurpose the function of different mature cells across the body—and harvest new tissue and organs from these cells.

Poliovirus therapy induces immune responses against cancer

September 20, 2017

An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

How ketogenic diets curb inflammation

September 25, 2017

Ketogenic diets – extreme low-carbohydrate, high-fat regimens that have long been known to benefit epilepsy and other neurological illnesses – may work by lowering inflammation in the brain, according to new research ...

Recommended for you

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.