New Fingerprint Breakthrough by Forensic Scientists

June 2, 2008

Forensic scientists at the University of Leicester, working with Northamptonshire Police, have announced a major breakthrough in crime detection which could lead to hundreds of cold cases being reopened.

The University’s Forensic Research Centre has been working with Northamptonshire Police’s scientific support unit to develop new ways of taking fingerprints from a crime scene.

Researchers in the University Department of Chemistry and the Police’s scientific support unit have developed the method that enables scientists to ‘visualise fingerprints’ even after the print itself has been removed. They conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

Dr John Bond, Honorary Fellow at the University of Leicester and Scientific Support Manager at Northamptonshire Police said: “For the first time we can get prints from people who handled a cartridge before it was fired.”

"Wiping it down, washing it in hot soapy water makes no difference - and the heat of the shot helps the process we use.

“The procedure works by applying an electric charge to a metal - say a gun or bullet - which has been coated in a fine conducting powder, similar to that used in photocopiers.

“Even if the fingerprint has been washed off, it leaves a slight corrosion on the metal and this attracts the powder when the charge is applied, so showing up a residual fingerprint.

“The technique works on everything from bullet casings to machine guns. Even if heat vaporises normal clues, police will be able to prove who handled a particular gun.”

Dr. Bond’s initial findings, which prompted the joint study, have been announced in a paper in the American Journal of Forensic Science.

Professor Rob Hillman of the Department of Chemistry added: “It is very satisfying to see excellent fundamental science being applied to a practical problem. We are delighted to have the opportunity to collaborate with Dr. Bond and his colleagues and we look forward to some very exciting chemistry and its application to forensic science.”

As a result of the research, cases dating back decades could be reopened because the underlying print never disappears, say the scientists. The technique also works in cases where prints may be left on other metals.

Dr Bond added: "It's certainly possible hundreds of cold cases could be reopened because with this method the only way to avoid a fingerprint being detected is through abrasive cleaning as that takes a layer off the metal.

Dr Emma Palmer, Director of the University's Forensic Research Centre said: “This collaboration between the University of Leicester and Northamptonshire Police is an excellent example of applying research to a practical problem in crime detection.”

Dr Bond and Professor Rob Hillman of the Chemistry Department at the University now intend to take this research forward via a three-year Ph.D. studentship to commence next academic year. The new project will explore further the corrosion of metal by fingerprint residue and investigate how it might be used to detect more crime with forensic science.

Source: University of Leicester

Explore further: Microbes leave 'fingerprints' on Martian rocks

Related Stories

Microbes leave 'fingerprints' on Martian rocks

October 17, 2017

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist ...

Unique study tests fundamental laws of physics

September 5, 2017

A study that will 'test our understanding of how the Universe works, particularly outside the relatively narrow confines of our planet' is being undertaken by an international team of researchers led by the University of ...

Recommended for you

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Mountain glaciers shrinking across the West

October 22, 2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier ...

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.