Venus Express reboots the search for active volcanoes on Venus

April 4, 2008
Venus Express
Venus Express is studying largely unknown phenomena in the Venusian atmosphere like never before. Its suite of instruments is also digging into the interaction between the solar wind and the planetary environment. In addition, the mission is gathering glimpses of the planet's surface, which is strictly coupled with its dense atmosphere. Credits: ESA (Image by AOES Medialab)

ESA’s Venus Express has measured a highly variable quantity of the volcanic gas sulphur dioxide in the atmosphere of Venus. Scientists must now decide whether this is evidence for active volcanoes on Venus, or linked to a hitherto unknown mechanism affecting the upper atmosphere.

The search for volcanoes is a long-running thread in the exploration of Venus. “Volcanoes are a key part of a climate system,” says Fred Taylor, a Venus Express Interdisciplinary Scientist from Oxford University. That’s because they release gases such as sulphur dioxide into the planet’s atmosphere.

On Earth, sulphur compounds do not stay in the atmosphere for long. Instead, they react with the surface of the planet. The same is thought to be true at Venus, although the reactions are much slower, with a time scale of 20 million years.

Some scientists have argued that the large proportion of sulphur dioxide found by previous space missions at Venus is the ‘smoking gun’ of recent volcanic eruptions. However, others maintain that the eruptions could have happened around 10 million years ago and that the sulphur dioxide remains in the atmosphere because it takes such a long time to react with the surface rocks.

New observations from Venus Express showing rapid variations of sulphur dioxide in the upper atmosphere have revived this debate.

The SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument analyses the way starlight or sunlight is absorbed by Venus’s atmosphere. The absorbed light tells scientists the identity of the atoms and molecules found in the planet’s atmosphere. This technique works only in the more tenuous upper atmosphere, above the clouds at an altitude of 70–90 km. In the space of a few days, the quantity of sulphur dioxide in the upper atmosphere dropped by two-thirds.

Jean-Loup Bertaux, Service d’Aeronomie du CNRS, Verrières-le-Buisson, is the Principal Investigator for SPICAV. “I am very sceptical about the volcanic hypothesis,” he says. “However, I must admit that we don’t understand yet why there is so much SO2 at high altitudes, where it should be destroyed rapidly by solar light, and why it is varying so wildly.”

Another instrument on Venus Express, VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), can see below the clouds at infrared wavelengths. It detects the signature of sulphur dioxide by the amount of infrared radiation that the molecule absorbs, the stronger the signature, the more abundant the molecule.

The variation appears to be smaller in the lower atmosphere. ”With VIRTIS, we monitor sulphur dioxide at an altitude of 35–40 km, and we have seen no change larger than 40% on a global scale over the last two years,” says Giuseppe Piccioni, VIRTIS co-Principal Investigator, IASF-INAF in Rome.

The only way to be absolutely certain that active volcanism is taking place on Venus is to see a volcano in action. This is not easy when you are trying to look through 100 km of thick, cloudy atmosphere. But the Venus Express team are working on two ways of doing this. The first is to look for localised increases in sulphur dioxide that would indicate a large plume of the gas issuing from a volcano. The other way is to look for hot spots on the surface that can be shown to be fresh lava flows.

In both cases, the instrument to use is VIRTIS. “No thermal anomaly has been detected so far,” says Pierre Drossart, Observatoire de Paris, France, and co-Principal Investigator on VIRTIS. Nevertheless, the search continues and the team plan to announce their findings soon.

Source: European Space Agency

Explore further: Venus holds warning for Earth

Related Stories

Venus holds warning for Earth

November 30, 2010

( -- A mysterious high-altitude layer of sulphur dioxide discovered by ESA's Venus Express has been explained. As well as telling us more about Venus, it could be a warning against injecting our atmosphere with ...

Could dark streaks in Venus' clouds be microbial life?

January 6, 2017

The question of life on Venus, of all places, is intriguing enough that a team of U.S. and Russian scientists working on a proposal for a new mission to the second planet—named Venera-D—are considering including the search ...

The light and dark of Venus

February 21, 2008

Venus Express has revealed a planet of extraordinarily changeable and extremely large-scale weather. Bright hazes appear in a matter of days, reaching from the south pole to the low southern latitudes and disappearing just ...

Recommended for you

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

May 26, 2017

On Oct. 13, 2014 something very strange happened to the camera aboard NASA's Lunar Reconnaissance Orbiter (LRO). The Lunar Reconnaissance Orbiter Camera (LROC), which normally produces beautifully clear images of the lunar ...

SDO sees partial eclipse in space

May 26, 2017

On May 25, 2017, NASA's Solar Dynamics Observatory, or SDO, saw a partial solar eclipse in space when it caught the moon passing in front of the sun. The lunar transit lasted almost an hour, between 2:24 and 3:17 p.m. EDT, ...

Jupiter's complex transient auroras

May 25, 2017

Combined observations from three spacecraft show that Jupiter's brightest auroral features recorded to date are powered by both the volcanic moon Io and interaction with the solar wind.

Methanol detected for first time around young star

May 25, 2017

Methanol, a key building block for the complex organic compounds that comprise life, has been detected for the first time in the protoplanetary disk of a young, distant star. This finding could help scientists better understand ...

New Neliota project detects flashes from lunar impacts

May 25, 2017

Using a system developed under an ESA contract, the Greek NELIOTA project has begun to detect flashes of light caused by small pieces of rock striking the moon's surface. NELIOTA is the first system that can determine the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.