Can quantum antiferromagnets reveal secrets of bosonic supersolids?

March 13, 2008 By Miranda Marquit, feature

“One of the fundamental issues in physics right now – and for the past many years – is whether or not bosons can form a supersolid phase,” Frédéric Mila tells Mila is a scientist at the Institute of Theoretical Physics at École Polytechnique Fédérale in Lausanne Switzerland. “We show how a supersolid phase may be achieved in a quantum antiferromagnet.”

Mila worked with Schmidt and Dorier, also at EPFL, and with Läuchli at the IRRMA in Lausanne on this project. Their work, which relies on a model of bosons with correlated hopping, is described in Physical Review Letters: “Supersolid Phase Induced by Correlated Hopping in Spin-1/2 Frustrated Quantum Magnets.”

“One of the issues has been whether or not a boson system can simultaneously form a superfluid and a crystal at the same place,” Mila says. “Most of the work has been done with helium-4, but at this point it is still debated whether a supersolid phase can be realized. But,” he continues, “for bosons already on a lattice, it may be easier to make a superlattice and realize a supersolid which may be seen in nature.”

In and email, Mila explains that one difference from the main approach to inducing a supersolid state in actual bosons (like helium-4) is to “deal with effective spin 1 triplet excitations induced by a magnetic field in certain quantum antiferromagnets, such as dimer models realized for instance in several copper oxides.”

Indeed, these excitations behave like bosons - those particles, such as photons or pions, with integral or zero spin. “The analogy between bosons and quantum magnets has proven to be very fruitful during the past ten years,” Mila says, “and there is a one-to-one correspondence between spin supersolid and bosonic supersolid.”

Additionally, Mila reports, the Lausanne team also made use of frustration in quantum magnets to induce correlated hopping between these bosons, whereby a boson can hop provided there is another boson nearby. This correlated hopping forms the basis of the model that Mila and his peers investigated: “Our paper shows that if bosonic triplets move through correlated hopping, the system will want to form a local solid order in order to gain kinetic energy,” Mila says, “thus realizing a spin supersolid”.

Mila admits that right now this work is still speculative: “So far compelling evidences have not been detected in the best copper oxide candidate [SrCu2(BO3)2].” Mila points out that, “a supersolid is expected to undergo two phase transitions upon lowering the temperature where the two types of order develop, and only one has been reported in that compound. One cannot exclude that experiments were not performed at low enough temperature, but this could be due as well to anisotropy effects.”

There is potential for future uses of bosons that could display two orders in the same system. “First of all,” Mila says, “experimentally and fundamentally it would be interesting.” But there are also possible materials applications. “As far as the future goes, there is general agreement that materials that could have two different types of orders at once would be interesting.” He is quick to qualify: “Of course, we are very far from any such applications.”

For now, though, Mila is content to try and pursue the experimental route. “Our first interest is actually to convince experimentalists to look at quantum magnetism to see if there could be a supersolid phase.”

Copyright 2007
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Related Stories

Recommended for you

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Mar 13, 2008
Am I to understand this as a localized coherent wave?
1 / 5 (1) Mar 16, 2008
"..speculative.."These physics thoughts are utterly abstract, not speculative. Yes, utter abstraction lends a sense of irrelevance.

May 10, 2008
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.