How red blood cells nuke their nuclei

February 10, 2008

Unlike the rest of the cells in your body, your red blood cells lack nuclei. That quirk dates back to the time when mammals began to evolve. Other vertebrates such as fish, reptiles, and birds, have red cells that contain nuclei that are inactive. Losing the nucleus enables the red blood cell to contain more oxygen-carrying hemoglobin, thus enabling more oxygen to be transported in the blood and boosting our metabolism.

Scientists have struggled to understand the mechanism by which maturing red blood cells eject their nuclei. Now, researchers in the lab of Whitehead Member Harvey Lodish have modeled the complete process in vitro in mice, reporting their findings in Nature Cell Biology online on February 10, 2008. The first mechanistic study of how a red blood cell loses its nucleus, the research sheds light on one of the most essential steps in mammalian evolution.

It was known that as a mammalian red blood cell nears maturity, a ring of actin filaments contracts and pinches off a segment of the cell that contains the nucleus, a type of “cell division.” The nucleus is then swallowed by macrophages (one of the immune system’s quick-response troops). The genes and signaling pathways that drive the pinching-off process, however, were a mystery.

“Using a cell-culture system we were actually able to watch the cells divide, go through hemoglobin synthesis and then lose their nuclei,” says Lodish, who is also a professor of biology at Massachusetts Institute of Technology. “We discovered that the proteins Rac 1, Rac 2 and mDia2 are involved in building the ring of actin filaments.”

“We were very interested in that Rac 1 and Rac 2 were involved in disposing the nuclei of red blood cells,” says Peng Ji, lead author and postdoctoral researcher in the Lodish lab. “These proteins are known for their role in creating actin fibers in many body cells, and a necessary component of many important cellular functions including cell division that support cell growth.”

His cell-culture system began with red blood cell precursors drawn from an embryonic mouse liver (in mammalian embryos, the liver is the main producer of such cells, rather than bone marrow as in adults). The cultured cells, synchronized to develop together, divided four or five times before losing their nuclei and becoming immature red blood cells. The researchers used simple fluorescence-based assays that enabled them to probe the changes in the red blood cells through the different stages leading up to the loss of the nucleus.

The researchers plan to further investigate the entire process of red blood cell formation, which may lead to insights about genetic alterations that underlie certain red blood cell disorders.

“During normal cell division, each daughter cell receives half the DNA,” comments Lodish. “In this case, when the red blood cell divides, one daughter cell gets all the DNA. What’s fascinating is that in this case, that daughter cell gets eaten by macrophages. Until now, scientists were unable to study these cells because they were unable to see them.”

Source: Whitehead Institute for Biomedical Research

Explore further: First patient cured of rare blood disorder

Related Stories

First patient cured of rare blood disorder

March 20, 2017

Using a technique that avoids the use of high-dose chemotherapy and radiation in preparation for a stem cell transplant, physicians at the University of Illinois Hospital & Health Sciences System have documented the first ...

Researchers discover 'map' in malaria vaccine hunt

March 21, 2017

A promising vaccine target for the most deadly type of malaria has had its molecular structure solved by Institute researchers, helping in the quest to develop new antimalarial therapies.

Operation of ancient biological clock uncovered

March 16, 2017

A team of Dutch and German researchers has discovered the operation of one of the oldest biological clocks in the world, which is crucial for life on earth as we know it. The researchers applied a new combination of cutting-edge ...

Test strip able to identify blood type in less than a minute

March 16, 2017

(Medical Xpress)—A team of researchers at Third Military Medical University in China has developed a test strip that can be used to identify a person's blood type in less than a minute. In their paper published in the journal ...

Chemists create nanoparticles for safe imaging of tumors

March 22, 2017

Chemists from Russia and Switzerland created biosafe luminescent nanoparticles for imaging tumors and blood vessels damaged by heart attack or stroke. The particles are made of hafnium oxide that is used for intravenous injection, ...

How the nervous system controls tumor growth

March 22, 2017

(Medical Xpress)—From the time it first comes online during development the nervous system begins to exact precise control over many biologic functions. In some cases, too much control. When it does, a little nerve-squelching ...

Recommended for you

Non-breeding ravens live in highly dynamic social groups

March 23, 2017

Ravens have impressive cognitive skills when interacting with conspecifics – comparable to many primates, whose social intelligence has been related to their life in groups. An international collaboration of researchers ...

Astronomers study a rare multi-eclipsing quintet of stars

March 23, 2017

(Phys.org)—A team of astronomers led by Krzysztof Hełminiak of the Nicolaus Copernicus Astronomical Center in Toruń, Poland, has investigated an interesting bright quintuple stellar system in which each of the stars is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.