Squeezed crystals deliver more volts per jolt

January 30, 2008

A discovery by scientists at the Carnegie Institution has opened the door to a new generation of piezoelectric materials that can convert mechanical strain into electricity and vice versa, potentially cutting costs and boosting performance in myriad applications ranging from medical diagnostics to green energy technologies.

High-performance piezoelectric materials used today, such as those in probes for medical ultrasound, are specially grown crystals of mixed composition known as “solid solutions,” making them difficult to study and expensive to manufacture. But in the January 31 Nature a research team led by Ronald Cohen and Russell Hemley of the Carnegie Institution’s Geophysical Laboratory report that at high pressure pure crystals of lead titanate show the same transitions seen in more complex materials.

Moreover, theory predicts that lead titanate under pressure has the largest piezoelectric response of any material known. This suggests the exciting possibility of low-cost but extremely high-performance piezoelectrics.

“The most useful piezoelectric materials have a critical range of compositions called the morphotopic phase boundary, where the crystal structure changes and the piezoelectric properties are maximal,” says Muhtar Ahart, a co-author of the study. “These are usually complex, engineered, solid solutions. But we showed that a pure compound can display a morphotopic phase boundary under pressure.”

For the study, the researchers placed powdered crystals of lead titanate in a device called a diamond anvil cell, which can generate pressures exceeding those at the center of the Earth. They monitored the changes in crystal structure with pressure using high-energy X-ray beams of the Advanced Photon Source at Argonne National Laboratory in Illinois. Using this data and calculations based on first-principle theoretical computations, the researchers were able to determine the piezoelectric properties of the pure crystals at different pressures.

“It turns out that complex microstructures or compositions are not necessary to obtain strong piezoelectricity,” says Ahart.

The use of piezoelectrics has boomed in recent years and is rapidly expanding. Their ability to convert mechanical energy to electric energy and vice versa has made them invaluable for acoustic transducers for sonar and medical ultrasound, and for tiny, high-precision pumps and motors for medical and other applications. High-performance piezoelectrics have also opened up new possibilities for “energy harvesting,” using ambient motion and vibration to generate electricity where batteries or other power sources are impractical or unavailable.

“This is a field in which theory, experiment, and material development work side-by-side,” says Ronald Cohen, a staff scientist at the Carnegie Institution and a co-author of the study. “Delineating the underlying physics of piezoelectric materials will make it easier to develop new materials and improve existing ones. We’re now poised on the edge of hugely expanded applications of these technologies.”

Source: Carnegie Institution

Explore further: Piezoelectrics stretch their potential with a method for flexible sticking

Related Stories

A flexible material that generates electricity when stressed

November 10, 2017

Researchers from Empa have developed a flexible material that generates electricity when stressed. In future, it might be used as a sensor, integrated into clothing or even implanted in the human body, for instance, to power ...

Better injection systems for diesel engines

October 31, 2017

One of the elements modern diesel engines require to become energy-efficient and clean are precisely controllable injection nozzles using piezo crystals. How exactly these crystals work has not been fully understood to date. ...

Turning a material upside-down can sometimes make it softer

October 20, 2017

Through the combined effect of flexoelectricity and piezoelectricity, researchers at the ICN2 led by ICREA Gustau Catalán in collaboration with the UAB have found that polar materials can be made more or less resistant to ...

Scientists can now produce electricity from tears

October 2, 2017

A team of Irish scientists has discovered that applying pressure to a protein found in egg whites and tears can generate electricity. The researchers from the Bernal Institute, University of Limerick (UL), Ireland, observed ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Jan 30, 2008
A good example is the push button mechanical striker that we all use to start the barbeque.

The spark created by the loud hammer bang is the
result of a piezoelectric crystal releasing electrons igniting the propane.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.