'Wiring up' enzymes for producing hydrogen in fuel cells

November 19, 2007
'Wiring up' enzymes for producing hydrogen in fuel cells
Computer graphic representation of a single-walled carbon nanotube (elongated structure) Credit: Courtesy of Michael J. Heben, National Renewable Energy Laboratory

Researchers in Colorado are reporting the first successful “wiring up” of hydrogenase enzymes. Those much-heralded proteins are envisioned as stars in a future hydrogen economy where they may serve as catalysts for hydrogen production and oxidation in fuel cells. Their report, describing a successful electrical connection between a carbon nanotube and hydrogenase, is scheduled for the Nov. issue of Nano Letters.

In the new study, Michael J. Heben, Paul W. King, and colleagues explain that bacterial enzymes called hydrogenases show promise as powerful catalysts for using hydrogen in fuel cells, which can produce electricity with virtually no pollution for motor vehicles, portable electronics, and other devices.

However, scientists report difficulty incorporating these enzymes into electrical devices because the enzymes do not form good electrical connections with fuel cell components. Currently, precious metals, such as platinum, are typically needed to perform this catalysis.

The researchers combined hydrogenase enzymes with carbon nanotubes, submicroscopic strands of pure carbon that are excellent electrical conductors. In laboratory studies, the researchers demonstrated that a good electrical connection was established using photoluminescence spectroscopy measurements.

These new “biohybrid” conjugates could reduce the cost of fuel cells by reducing or eliminating the need for platinum and other costly metal components, they say.

Source: American Chemical Society

Explore further: Researchers identify faulty 'brake' that interferes with heart muscle's ability to contract and relax

Related Stories

Termite-gut microbes extract clean energy from coal

January 8, 2019

Termites generally don't elicit a whole lot of love. But surprisingly, this wood-eating insect may hold the key to transforming coal—a big polluting chunk of the global energy supply—into cleaner energy for the world, ...

Metallic nanocatalysts imitate the structure of enzymes

November 8, 2018

An international team of researchers has transferred certain structural characteristics of natural enzymes, which ensure particularly high catalytic activity, to metallic nanoparticles. The desired chemical reaction thus ...

Next step on the path towards an efficient biofuel cell

November 14, 2018

Fuel cells that work with the enzyme hydrogenase are, in principle, just as efficient as those that contain the expensive precious metal platinum as a catalyst. However, the enzymes need an aqueous environment, which makes ...

Recommended for you

Fish-inspired material changes color using nanocolumns

March 20, 2019

Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.