Stress response in the brain relies on a blood-thinning protein

November 20, 2007

A stressed-out mouse tends to be a bit timid, tentative, even fearful. For that matter, so does a stressed-out human. Our ability to learn from frightening situations is part of what helps us avoid them in the future. When that learning process goes awry, it can lead to depression and a decreased ability to recognize dangerous situations. Now, research by Rockefeller scientists has pinned down a protein in the hippocampus — a part of the brain that controls memory, learning and fear — that’s essential for maintaining this stress response.

The protein tPA (tissue plasminogen activator) is best known for its ability to dissolve blood clots. But more and more studies are showing that it also plays a role in neural plasticity in the brain. Sidney Strickland, head of the Laboratory of Neurobiology and Genetics, and postdoc Erin Norris have taken the research a step further to see whether tPA has anything to do with how stress affects memory, learning ability and anxiety.

Prior research from the Strickland lab had shown that mice lacking tPA also seem to lack fear, a behavior largely dictated by a part of the brain called the amygdala. To determine whether tPA also affects behavior controlled by the hippocampus, Norris and Strickland compared normal mice to tPA-deficient ones. Then they divvied the mice up further: Half of each group they left alone, and the rest they exposed to six hours of painless restraint stress.

Once the groups were complete, the researchers placed each mouse — wild-type, stressed wild-type, tPA-deficient and stressed tPA-deficient — into a small chamber, where the rodents were exposed to a sound paired with a small electric shock. The next day they returned the mice to the chamber, but this time left them alone.

All of the non-stressed as well as the stressed wild-type mice appeared to have learned from experience, showing their fear of the chamber in the form of freezing behavior. In comparison, the mice lacking tPA had significantly reduced freezing responses. “So they were either less fearful of their situation, or they just didn’t remember — they didn’t learn from their training,” Norris says. “We could say that if you don’t have tPA and you are in a stressful situation, you don’t have synaptic plasticity changes in the hippocampus.” The wild-type mice were capable of learning because tPA could induce changes in their brains’ neural synapses.

Norris and Strickland believe that the underlying mechanism for this has to do with a receptor that normally resides at the cell membrane but changes its location during stress. They found that, in mice lacking tPA, the receptor stayed anchored at the membrane even during stress. And without the receptor’s change in position, there could be no stress response. Norris has since begun investigating whether tPA could also be an important factor in depression, since stress has been shown to lead to this disorder in humans.

Citation: Proceedings of the National Academy of Sciences 104(33): 13473–13478 (August 14, 2007)

Source: Rockefeller University

Explore further: Brain may use clot-busting drug naturally as protection against stroke

Related Stories

Recommended for you

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Researchers propose solutions for urine sample splash dilemma

November 19, 2018

Urinating into a cup may be a medical necessity for monitoring the health of the kidney and other issues, but it's often uncomfortable, embarrassing and messy—especially for women. But what if there were a way to comfortably ...

Swarmlike collective behavior in bicycling

November 19, 2018

Whether it's the acrobatics of a flock of starlings or the synchronized swimming of a school of fish, nature is full of examples of large-scale collective behavior. Humans also exhibit this behavior, most notably in pelotons, ...

Explaining a fastball's unexpected twist

November 18, 2018

An unexpected twist from a four-seam or a two-seam fastball can make the difference in a baseball team winning or losing the World Series. However, "some explanations regarding the different pitches are flat-out wrong," said ...

Helping Marvel superheroes to breathe

November 18, 2018

Marvel comics superheroes Ant-Man and the Wasp—nom de guerre stars of the eponymous 2018 film—possess the ability to temporarily shrink down to the size of insects, while retaining the mass and strength of their normal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.