Trapped rainbow: New technique to slow down, stop and capture light offers bright future for internet, powerful computer

November 14, 2007

Professor Ortwin Hess, his PhD student Kosmas Tsakmakidis of the Advanced Technology Institute and Department of Physics at the University of Surrey and Professor Alan Boardman from Salford University have revealed a technique which may be able to slow down, stop and capture light.

The technique would allow the use of light rather than electrons to store memory in devices such as computers, enabling an increase in operating capacity of 1,000% by using light’s broad spectrum rather than single electrons. Slow light could also be used to increase the speed of optical networks, such as the Internet.

At major interconnection points, where billions of optical data packets arrive simultaneously, it would be useful if we could control this traffic optically, by slowing some data packets to let others through. This system would work in the same way as traffic congestion calming schemes do on our motorways, when a reduction in the speed limit enables swifter overall flow of traffic.

Previous attempts to slow and capture light have involved extremely low or cryogenic temperatures, have been extremely costly, and have only worked with one specific frequency of light at a time. The technique proposed by Professor Hess and Mr Kosmas Tsakmakidis involves the use of negative refractive index metamaterials along with the exploitation of the Goos Hänchen effect, which shows that when light hits an object or an interface between two media it does not immediately bounce back but seems to travel very slightly along that object, or in the case of metamaterials, travels very slightly backwards along the object.

Professor Hess’ theory shows that if you create a tapered layer of glass surrounded by two suitable layers of negative refractive index metamaterials a packet of white light injected into this prism from the wide end will be completely stopped at some point in the prism. As different component ‘colours’ of white light have different frequencies each individual frequency would therefore be stopped at a different stage down the taper, thereby creating the ‘trapped rainbow’.

The negative index metamaterials that allow for unprecedented control over the flow of light have a sub-structure with tiny metallic components much smaller than the wavelength of the light and have recently been demonstrated experimentally for THz and infrared wavelengths. Covering the full rainbow colours in the visible frequency spectrum should be within science’s reach in the very near future.

Professor Hess comments: Our "Trapped Rainbow" bridges the exciting fields of metamaterials with slow light research. It may open the way to the long-awaited realization of an "optical capacitor". Clearly, the macroscopic control and storage of photons will conceivably find applications in optical data processing and storage, a multitude of hybrid, photonic devices to be used in optical fibre communication networks and integrated photonic signal processors as well as become a key component in the realisation of quantum optical memories. It may, further herald a new realm of photonics with direct application of the ‘Trapped Rainbow’ storage of light in a huge variety of scientific and consumer fields.

Source: University of Surrey

Explore further: New mirror reflects light differently than conventional mirrors

Related Stories

Synthetic material acts like an insect cloaking device

November 3, 2017

Synthetic microspheres with nanoscale holes can absorb light from all directions across a wide range of frequencies, making them a candidate for antireflective coatings, according to a team of Penn State engineers. The synthetic ...

Invisibility cloak closer to becoming a reality

September 18, 2017

Photonics is a rapidly growing field in which some of the most sci-fi ideas of the not-so-distant past, are taking form. Now EU-funded research is bringing the notion of an invisibility cloak closer by using microscopic structures ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Noumenon
4.6 / 5 (48) Nov 15, 2007
Is possible to slow light? They should use better language in these articles.
Adriab
5 / 5 (1) Nov 15, 2007
Try searching for "Slow Light Experiment". The Group Velocity of light propagating through a medium has been slowed in several experiments.
Noumenon
4.7 / 5 (47) Nov 15, 2007
You can make light take a longer path, but to change its inherent velocity?!
Reaper6971
not rated yet Nov 15, 2007
They even made light exit a medium BEFORE the light traveled through the medium.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.