Professor looks for life in and under antarctic ice

August 31, 2007

Antarctica is home to the largest body of ice on Earth. Prior to approximately 10 years ago, no one thought that life could exist beneath the Antarctic ice sheets, which can be more than two miles thick in places, because conditions were believed to be too extreme. However, Brent Christner, assistant professor of biological sciences at LSU, has spent a great deal of time in one of the world’s most hostile environments conducting research that proves otherwise.

Christner’s discoveries of viable microbes in ancient ice cores and subglacial environments coupled with the realization that large quantities of liquid water exist beneath the Antarctic ice sheet have changed the way biologists view life in Antarctica.

“More than 150 lakes have been discovered underneath nearly two-and-a-half miles of ice in Antactica,” said Christner, “and most of these bodies of water have likely been covered by ice for at least 15 million years. The environmental conditions in the deep cold biosphere are unlike anything on the Earth’s surface and this represents one of the most extreme habitats for life on the planet.”

A timeframe of up to one million years is required for microbes in the atmosphere to be transported through the ice sheet and enter an Antarctic subglacial lake. Even though cells are preserved in the ice, the question of how the DNA of these organisms remains unscathed over such long periods of apparent metabolic inactivity still remains.

According to Christner, there are two possible explanations of how these microbes could survive frozen for millenia. Firstly, the microbes may be dormant in the ice and possess “very effective repair mechanisms that are initiated when the cells are introduced to a growth situation,” he said. Given enough time, dormant cells – without active DNA repair mechanisms – would eventually incur a lethal level of radiation-induced damage from natural background sources in the ice.

Alternatively, Christner suggests that the microbes may stay metabolically active while entrapped in the ice, giving them the ability to repair damage as it occurs. “If this is the case, these microbes may be essentially immortal when frozen – that is, if a continuous energy supply was available,” he said.

Christner’s current laboratory research has shown that glacier microbes are capable of metabolic activity when frozen down to -20 degrees Celcius. “Our experiments have revealed the potential for microbes to metabolize under frozen conditions, but we still lack the ‘smoking gun’ which proves this occurs in nature. We are now taking what we learned in the lab at LSU and using it to design experiments that address this question in real Antarctic ice samples,” he said.

In collaboration with research colleagues from Montana State University, Christner and two members of his laboratory will deploy to Antarctica in October 2007. Shawn Doyle, LSU senior and microbiology major, will accompany Christner, staying through January 2008. “I interviewed students based on their academic record and experiences,” said Christner. “We’re looking for more than a lab rat, because, as you might imagine, Antarctica presents various challenges for doing science.” He is currently looking for a Ph.D. student to join the research team and conduct field work during the 2008-09 Antarctic season.

“The implication of our research is that the large ice sheets of Antarctica, which make up 70 percent of the planet’s fresh water reserves, may represent active biomes, substantially expanding the known boundaries for life on Earth,” said Christner. “Terrestrial glacier environments provide analogues to address questions relevant to the search for past or present microbial life in extraterrestrial ice on planets and moons in our solar system. Based on what we now know about the tenacity of life in Earth’s deep cold biosphere, microbial life surviving and persisting in ice on Mars or Europa is not that much of a stretch.”

Source: Louisiana State University

Explore further: The search for extraterrestrial life in the water worlds close to home

Related Stories

Could dark streaks in Venus' clouds be microbial life?

January 6, 2017

The question of life on Venus, of all places, is intriguing enough that a team of U.S. and Russian scientists working on a proposal for a new mission to the second planet—named Venera-D—are considering including the search ...

Biochemist studies how ribosomes make proteins

January 10, 2017

Ribosomes are molecular machines programmed by genetic blueprints, which make proteins by linking amino acids together into linear chains that fold into sequence-dependent shapes. Ludwig Maximilian University biochemist Roland ...

Recommended for you

Controlling ice formation

March 24, 2017

(Phys.org)—Researchers have demonstrated that ice crystals will grow along straight lines in a controlled way on microgrooved surfaces. Compared to the random formation of ice crystals on smooth surfaces, the ice on the ...

Study into who is least afraid of death

March 24, 2017

A new study examines all robust, available data on how fearful we are of what happens once we shuffle off this mortal coil. They find that atheists are among those least afraid of dying... and, perhaps not surprisingly, ...

Astronomers identify purest, most massive brown dwarf

March 24, 2017

An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known. The object, known as SDSS J0104+1535, is ...

Inventing a new kind of matter

March 24, 2017

Imagine a liquid that could move on its own. No need for human effort or the pull of gravity. You could put it in a container flat on a table, not touch it in any way, and it would still flow.

In a quantum race everyone is both a winner and a loser

March 24, 2017

Our understanding of the world is mostly built on basic perceptions, such as that events follow each other in a well-defined order. Such definite orders are required in the macroscopic world, for which the laws of classical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.