Electronic 'crowd behavior' revealed in semiconductors

July 7, 2007
Electronic 'crowd behavior' revealed in semiconductors
Physicists at JILA have confirmed subtle "collective behavior" among electronic structures in semiconductors, research that may help improve the design of optoelectronic devices. In the first image (#1, showing new experimental data), matching large peaks in the foreground, showing energy intensity ranging from low in blue to high in red, indicate that pairs of large electronic particles called excitons are oscillating in concert as they absorb ultrafast laser light and emit energy at various frequencies. The data match new theoretical models accounting for all electronic properties of semiconductors (image #2) much better than older theoretical models. Credit: JILA and University of Marburg

Like crowds of people, microscopic particles can act in concert under the right conditions. By exposing crowd behavior at the atomic scale, scientists discover new states and properties of matter.

Now, ultrafast lasers have revealed a previously unseen type of collective electronic behavior in semiconductors, which may help in the design of optoelectronic devices. The work at JILA, a joint venture of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, is described in a new paper in the Proceedings of the National Academy of Sciences.

Electronic 'crowd behavior' revealed in semiconductors
Physicists at JILA have confirmed subtle "collective behavior" among electronic structures in semiconductors, research that may help improve the design of optoelectronic devices. Credit: JILA and University of Marburg

Design of optoelectronic devices, like the semiconductor diode lasers used in telecommunications, currently involves a lot of trial and error. A designer trying to use basic theory to calculate the characteristics of a new diode laser will be off by a significant amount because of subtle interactions in the semiconductor that could not be detected until recently.

To shed light on these interactions, the JILA team used a highly sensitive and increasingly popular method of manipulating laser light energy and phase (the point in time when a single light wave begins) to reveal the collective behavior of electronic particles that shift the phase of any deflected light. Their work is an adaptation of a technique that was developed years ago by other researchers to probe correlations between spinning nuclei as an indicator of molecular structure (and led to a Nobel prize).

In the latest JILA experiments, a sample made of thin layers of gallium arsenide was hit with a continuous series of three near-infrared laser pulses lasting just 100 femtoseconds each. Trillions of electronic structures called excitons were formed. Excitons are large, fluffy particles consisting of excited electrons and the “holes” they left behind as they jumped to higher-energy vibration patterns.

By tinkering with the laser tuning—the frequency and orientation of the electric field—and analyzing how the semiconductor altered the intensity and phase of the light, the researchers identified a subtle coupling between pairs of excitons with different energy levels, or electron masses. The experimental data matched advanced theoretical calculations of the electronic properties of semiconductors, confirming the importance of the collective exciton behavior—and dramatically demonstrated the superiority of those calculations over simpler models of semiconductor behavior (see graphic).

Citation: T. Zhang, I. Kuznetsova, T. Meier, X. Li, R.P. Mirin, P. Thomas and S.T. Cundiff. Polarization-dependent optical two-dimensional Fourier transform spectroscopy of semiconductors. Proceedings of the National Academy of Sciences. Scheduled to be posted on-line July 6.


Source: National Institute of Standards and Technology

Explore further: High-altitude observatory sheds light on origin of excess anti-matter

Related Stories

Study: For older women, every movement matters

November 16, 2017

Folding your laundry or doing the dishes might not be the most enjoyable parts of your day. But simple activities like these may help prolong your life, according to the findings of a new study in older women led by the University ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

A structural clue to attacking malaria's 'Achilles heel'

November 16, 2017

Researchers from The Scripps Research Institute (TSRI) and PATH's Malaria Vaccine Initiative (MVI) have shed light on how the human immune system recognizes the malaria parasite though investigation of antibodies generated ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

The stacked color sensor

November 16, 2017

Red-sensitive, blue-sensitive and green-sensitive color sensors stacked on top of each other instead of being lined up in a mosaic pattern – this principle could allow image sensors with unprecedented resolution and sensitivity ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.