Fluorescent glass SRMs are new tool for spectroscopy

June 9, 2007

Researchers at the National Institute of Standards and Technology have developed two new calibration tools to help correct and validate the performance of analytic instruments that identify substances based on fluorescence.

Recent years have seen a significant increase in the development and use of fluorescence-based analytic techniques. Researchers can detect, measure and identify unknown substances—potentially including chemical and biological weapons—using spectroscopic techniques. In fluorescence spectroscopy, scientists send a beam of light at a certain wavelength into a sample, exciting electrons in particular analytes or fluorescent labels, which then emit light at longer wavelengths with measurable energy levels.

This resulting spectral signature, recorded by a fluorescence spectrometer, is distinct for different fluorescent compounds. Many of these assays are being used in areas—including clinical diagnostics, environmental monitoring and drug development—where regulatory requirements are strict and may require standards for instrument qualification and method validation.

To meet these needs, NIST has developed two ready-to-use, fluorescent glass Standard Reference Materials (SRMs), about the size of a pack of a gum, whose certified values can be used to correct fluorescence emission spectra for relative intensity. SRM 2940 (“Orange emission”) has certified values for emission wavelengths from 500 to 800 nanometers when excited with light at 412 nm; SRM 2941 (“Green emission”) has certified values for emission wavelengths from 450 to 650 nm when excited with light at 427 nm.

To use SRM 2941 to calibrate a fluorescence spectrometer, for instance, investigators would excite the glass with light at 427 nm and collect the resulting fluorescence emission from 450 nm to 650 nm. Spectral correction factors for the instrument then could be determined by comparing the measured intensity values to the certified values. The fluorescence spectrum of any unknown sample taken on that instrument that emits from 450 nm to 650 nm then could be corrected to yield its true spectral shape.

These standards also are resistant to photodegradation, making them good performance validation standards. Researchers can use them on a day-to-day basis to validate performance by simply measuring their fluorescence intensity under the same conditions, even for fluorescence instruments with non-tunable wavelength selectors, such as filter-based fluorometers and microscopes.

Standard Reference Materials are among the most widely distributed and used products from NIST. The agency prepares, analyzes and distributes more than 1300 different materials that are used throughout the world to check the accuracy of instruments and test procedures.

Source: National Institute of Standards and Technology

Explore further: Researchers develop label-free technique to image microtubules

Related Stories

Diagnostics for super-hot plasmas in fusion reactors

January 30, 2017

In the sun and other fusion plasmas, atoms of hydrogen and its isotopes are the fuel. Plasmas are gases that are so hot that electrons are knocked free of the atom, making the atoms electrically charged ions. The un-ionized ...

More exact, ethical method to tell the sex of baby chickens

December 15, 2016

Thanks to an imaging technique called optical spectroscopy, it is possible for hatcheries to accurately determine the sex of a chick within four days of an egg being laid. This non-destructive method picks up on differences ...

Recommended for you

Scientists solve puzzle of turning graphite into diamond

February 23, 2017

(Phys.org)—Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the ...

Tiny particles with a big, cool role to play in microscopy

February 23, 2017

Researchers at UTS, as part of a large international collaboration, have made a breakthrough in the development of compact, low-cost and practical optical microscopy to achieve super-resolution imaging on a scale 10 times ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.