Using soil to lock up carbon could help offset global warming

May 14, 2007
Using soil to lock up carbon could help offset global warming
When bioenergy is produced by pyrolysis (low-temperature burning without oxygen), it produces biochar, which has twice as much carbon in its residue than that from other sources. This makes bioenergy carbon-negative and improves soil health. Credit: Cornell University

In the journal Nature, Cornell biogeochemist Johannes Lehmann writes that an economical way to help offset global warming is to pull carbon dioxide out of the atmosphere by charring biomass without the use of oxygen.

Writing in the May 10 issue of the journal Nature, a Cornell biogeochemist describes an economical and efficient way to help offset global warming: Pull carbon dioxide out of the atmosphere by charring, or partially burning, trees, grasses or crop residues without the use of oxygen.

This process, he writes, would double the carbon concentration in the residue, which could be returned to the soil as a carbon sink. The exhaust gases from this process and other biofuel production could then be converted into energy.

This so-called biochar sequestration could offset about 10 percent of the annual U.S. fossil-fuel emissions in any of several scenarios, says Johannes Lehmann, associate professor of soil biogeochemistry in the Department of Crop and Soil Sciences at Cornell.

"Biochar sequestration, combined with bioenergy production, does not require a fundamental scientific advance, and the underlying production technology is robust, clean and simple, making it appropriate for many regions of the world," said Lehmann. "It not only reduces emissions but also sequesters carbon, making it an attractive target for energy subsidies and for inclusion in the global carbon market."

Most plants pull carbon dioxide out of the atmosphere and lock it up in their biomass or in soil organic matter. But taking this a step further, Lehmann recommends heating the plant biomass without oxygen in a process known as low-temperature pyrolysis. When returned to the soil, biochar creates a stable, long-term carbon sink.

"Biochar also has been shown to improve the structure and fertility of soils, to enhance the retention and efficiency of fertilizers as well as to improve the productivity of soil," said Lehmann.

Capturing the exhaust gases from the pyrolysis process produces energy in such forms as heat, electricity, bio-oil or hydrogen. By adding the biochar to soil rather than burning it as an energy source (which most companies do), bioenergy can be turned into a carbon-negative industry. Biochar returned to soil not only secures soil health on bioenergy plantations but also reduces greenhouse gas emissions by an additional 12 to 84 percent.

Compared with ethanol production, pyrolysis that produces biochar and bioenergy from its exhaust gases is much less expensive, Lehmann said, when the feedstock is animal waste, clean municipal waste or forest residues collected for fire prevention.

Lehmann said that as the value of carbon dioxide increases on carbon markets, "we calculate that biochar sequestration in conjunction with bioenergy from pyrolysis becomes economically attractive when the value of avoided carbon dioxide emissions reaches $37 per ton." Currently, the Chicago Climate Exchange is trading carbon dioxide at $4 a ton; it is projected that that the price will rise to $25-$85 a ton in the coming years.

Source: Cornell University

Explore further: This ingenious approach not only binds CO2, but also improves the soil

Related Stories

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

'Plan B': Seven ways to engineer the climate

October 11, 2017

Dismissed a decade ago as far-fetched and dangerous, schemes to tame global warming by engineering the climate have migrated from the margins of policy debate towards centre stage.

Biochar shows benefits as manure lagoon cover

August 9, 2017

Manure is a reality in raising farm animals. Manure can be a useful fertilizer, returning valued nitrogen, phosphorus, and potassium to the soil for plant growth. But manure has problems. Odor offensiveness, gas emissions, ...

Recommended for you

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.