Latent memory of cells comes to life

May 17, 2007
Artistic Impression of Nucleosomes Interaction
Artistic impression of nucleosomes interaction. Credit: Mette Høst, CMOL, Niels Bohr Institute, University of Copenhagen

New Danish research has examined the mechanisms behind latent cell memory, which can come to life and cause previously non-existent capacities suddenly to appear. Special yeast cells for example, can abruptly change from being of a single sex to hermaphrodite.

Researchers from the Niels Bohr Institute at the University of Copenhagen have used mathematical models and computer simulations to examine fundamental mechanisms of cell memory. The research is an interdisciplinary cooperation between molecular biologists and physicists and has just been published in the prestigious scientific journal CELL where it is featured on the cover page (article by Dodd et al., 18 May issue).

Dormant capacities

Our genetic material - DNA – is a blueprint for how we look and are. This genetic material is very stable and it is faithfully transmitted to our descendants. Once in a while though, a change occurs to the DNA, either large or small. Such changes are at the origin of the immense and varied animal and plant life on earth. Constructive changes in the DNA, that is, changes creating new functions, normally arise by a slow and gradual process that involves natural selection operating over many generations.

Sometimes however, dramatic and very sudden changes are observed in one individual in the absence of any kind of change to the DNA. This happens in fact in all of us as our body develops: cells with identical genetic information adopt very different fates, forming tissues that have apparently very little in common with each other, such as skin, brain, or bones. Mechanisms at the origin of this so-called cellular differentiation are those for which researchers at the University of Copenhagen have a possible clarification.

”The explanation for the sudden changes is that it is not the DNA itself that is altered - it is its immediate surroundings that change and thereby cause a cell to activate some of its dormant capacities” says Kim Sneppen, professor in Biophysics at the Niels Bohr Institute, University of Copenhagen.

The environment controls the DNA

The DNA coils itself around protein complexes called nucleosomes. Importantly, nucleosomes can carry various chemical modifications that either allow, or prevent, the expression of the DNA wrapped around them. Every time a cell divides into new cells, its double-stranded DNA splits into two single strands, which then each produce a new double-strand.

Nucleosomes though are not duplicated like the DNA-strands. Rather, they are distributed between the two new DNA double strands and the empty spaces are filled by new nucleosomes. Cell division is therefore an opportunity for changes in the nucleosomal composition of a specific DNA region. Changes can also happen during the lifetime of a cell due to chemical reactions allowing interconversions between the different nucleosome types. The effect of these changes can be that a latent capacity that was dormant comes to life, or, conversely, that a previously active capacity shuts down.

Same inheritance – different traits

In the practical experiment molecular biologists used a mutant of a yeast cell which was bi-stable, in that it could become either of a single sex or hermaphrodite. The experiment showed that a spontaneous change occurred in the yeast cells about every 2000 cell-generations. By building a mathematical model based on positive feedback from the microscopic state of the nucleosomes, the research group could simulate the experimental results and in this way gained insight into the mechanisms by which living cells with identical DNA can achieve extreme differentiation.

The research at the ‘Models of Life’ Basic Research Center at the Niels Bohr Institute has shown that communication between nucleosomes and positive feedback are likely to constitute fundamental memory mechanisms in individual cells. The mechanism gives both stability and openness to new influences which the cell could need to change state. Nature has a partner which controls the cells latent memory.

Source: University of Copenhagen

Explore further: Potentially reversible changes in gene control 'prime' pancreatic cancer cells to spread

Related Stories

SMiLE-seq: A new technique speeds up genetics

January 16, 2017

Scientists at EPFL have developed a technique that can be a game-changer for genetics by making the characterization of DNA-binding proteins much faster, more accurate, and efficient.

Histone degradation accompanies the DNA repair response

January 10, 2017

Earlier work from the laboratory of Susan Gasser had noted changes in the physical behavior of chromatin when it incurred DNA damage: loci bearing double-strand breaks showed enhanced movement, becoming highly dynamic. Furthermore, ...

Recommended for you

Probe for nanofibers has atom-scale sensitivity

January 20, 2017

Optical fibers are the backbone of modern communications, shuttling information from A to B through thin glass filaments as pulses of light. They are used extensively in telecommunications, allowing information to travel ...

Humans, not climate change, wiped out Australian megafauna

January 20, 2017

New evidence involving the ancient poop of some of the huge and astonishing creatures that once roamed Australia indicates the primary cause of their extinction around 45,000 years ago was likely a result of humans, not climate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.