Discovery of new family of pseudo-metallic chemicals

April 24, 2007

The periodic table of elements, all 111 of them, just got a little competition. A new discovery by a University of Missouri-Columbia research team, published in Angewandte Chemie allows scientists to manipulate a molecule discovered 50 years ago in such as way as to give the molecule metal-like properties, creating a new, "pseudo" element. The pseudo-metal properties can be adjusted for a wide range of uses and might change the way scientists think about attacking disease or even building electronics.

Five decades ago, Fred Hawthorne, professor of radiology and director of the International Institute for Nano and Molecular Medicine at MU, discovered an extremely stable molecule consisting of 12 boron atoms and 12 hydrogen atoms. Known as "boron cages," these molecules were difficult to change or manipulate, and sat dormant in Hawthorne's laboratory for many years.

Recently, Hawthorne's scientific team found a way to modify these cages, resulting in a large, new family of nano-sized compounds. In their study, which was published this month, Hawthorne, and Mark Lee, assistant professor at the institute and first author of the study, found that attaching different compounds to the cages gave them the properties of many different metals.

"Since the range of properties for these pseudo-metals is quite large, they might be referred to as 'psuedo-elements belonging to a completely new pseudo-periodic table,'" Lee said.
Potential applications of this discovery are abundant, especially in medicine.

"All living organisms are essentially a grand concert of chemical reactions involving the transfer of electrons between molecules and metals,'" Lee said. "The electron transfer properties of this new family of molecules span the entire range of those found within living systems. Because of this, these pseudo-metals may be tuned for use as specific probes in living systems to detect or treat disease at the earliest state."

In addition, because the compounds possess such a wide range of flexibility, they might have ramifications for nanotechnology and various kinds of electronics.

"This single discovery could open entirely new fields of study because of the controlled variability of the compounds," Lee said. "We have the ability to change the properties of these pseudo-metals, which gives us the opportunity to tailor them to our needs, whether that is biomedical, chemical or electronic applications, some of which may utilize nanoscience."

Source: University of Missouri-Columbia

Explore further: Team engineers oxide semiconductor just single atom thick

Related Stories

Team engineers oxide semiconductor just single atom thick

February 8, 2017

A new study, affiliated with UNIST has introduced a novel method for fabrication of world's thinnest oxide semiconductor that is just one atom thick. This may open up new possibilities for thin, transparent, and flexible ...

Ultra-fast, ultra-sensitive PtSe2 gas sensors

January 13, 2017

Researchers from Trinity College Dublin, Ireland have shown that PtSe2, a little-studied transition metal dichalcogenide has potential for a variety of uses. In particular, PtSe2 is an excellent high performance gas sensor, ...

Recommended for you

The dawn of a new era for Supernova 1987a (Update)

February 24, 2017

Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following ...

Nano-sized hydrogen storage system increases efficiency

February 24, 2017

Lawrence Livermore scientists have collaborated with an interdisciplinary team of researchers including colleagues from Sandia National Laboratories to develop an efficient hydrogen storage system that could be a boon for ...

How proteins reshape cell membranes

February 24, 2017

Small "bubbles" frequently form on membranes of cells and are taken up into their interior. The process involves EHD proteins - a focus of research by Prof. Oliver Daumke of the MDC. He and his team have now shed light on ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.