Gold catalysts are 'hot' because their electrons are heavy, chemist proposes

March 23, 2007
Chemists strike gold with gold catalysts
A model of the gold-phosphine complex based on X-ray crystallographic data. The gold atoms, in gold, participate in organic reactions, donating or accepting electrons, but the precise structure of the surrounding phosphine molecule determines the final product and whether it is left-handed or right-handed. The pink atoms are phosphorus; the black, carbon; the green, chlorine. (Dean Toste/UC Berkeley)

A University of California, Berkeley, chemist has found a mother lode of new and unique gold-catalyzed reactions by applying Einstein's theory of relativity to the rare and precious metal.

Catalysts are metals that speed up chemical reactions, such as when the platinum in a car's catalytic converter instantly converts polluting engine exhaust to oxygen, nitrogen, carbon dioxide and water.

Dean Toste, a UC Berkeley associate professor of chemistry, was one of the first chemists to experiment with gold as a catalyst. He opened the door for others interested in gold's versatility and in the potential to generate chemicals of interest for the chemical and pharmaceutical industry more efficiently and using less toxic precursors.

"This is a really hot area," Toste said. "If you look at the most-cited articles in the Journal of the American Chemical Society, many are about gold catalysis.

"With this class of gold catalysts, you can develop a number of unprecedented reactions that have never been seen before."

In a review article appearing in yesterday's (March 22) issue of Nature, Toste discusses the new field and proposes a new theory for why gold has such unusual, and practical, catalytic properties. So far, the hypothesis has successfully predicted the behavior of gold catalysts in new chemical reactions.

"Our hypothesis really allows us to approach catalysis in a new way, melding the two fields of theoretical chemistry and synthetic chemistry," Toste said.

At the heart of his hypothesis is the special theory of relativity, proposed by Albert Einstein 102 years ago and typically thought of as applying only to cosmological questions. But late UC Berkeley chemist Kenneth Pitzer showed some 70 years ago that the theory comes into play in chemistry as well. Other researchers have used so-called relativistic quantum mechanics to explain gold's yellow color and why mercury is a liquid instead of a solid.

Toste now takes this explanation a step further, crediting special relativity with making gold - and perhaps the related and widely used catalyst platinum - act as both an acceptor and a donor of electrons in a catalytic reaction. Typical metal catalysts do one or the other, but not both.

One of the key tenets of relativity is that nothing can travel faster than the speed of light. The reason for this is that objects become heavier, or more massive, the faster they go, with the mass approaching infinity as the object approaches the speed of light.

In an atom, where electrons race around the nucleus like buzzing bees, the velocity of an electron doesn't get anywhere near the speed of light until the atomic nucleus fills up with lots of positively charged protons - the negatively charged electrons have to move faster to keep from being pulled into the highly positive nucleus. This occurs in the transition metals of the periodic table of elements, metals ranging from tantalum and tungsten to platinum and gold. In a gold atom, with 79 protons in the nucleus, the 79 electrons whip around the nucleus at about half the speed of light.

The net effect is that gold's electrons are much heavier and are pulled in closer to the nucleus, lowering the energy levels and making the atom more compact. According to this hypothesis, gold's s shells, which are its lowest energy spherically symmetric electron shells, contract. This shields the electrons in outer, asymmetric p and d orbits from the nuclear charge, allowing them to expand slightly. In gold, the contraction of the outermost (6s) shell and the expansion of the next-inner (5p) shell reduces the energy difference between the two to the equivalent of a photon of blue light. This allows gold to absorb blue light and, thus, look yellow. Silver, because it exhibits a much less dramatic relativistic effect, is unable to absorb any visible light and is totally reflective.

Toste proposes that this same shielding effect allows the more tightly bound s shell to easily accept electrons from other molecules, while the partly shielded d shell can easily donate electrons to a reaction.

Thus, gold is able to participate in reactions both as a donor and as an acceptor of electrons, which makes it particularly useful in catalyzing reactions at carbon-carbon bonds, the backbone of all organic molecules. According to Toste, a gold atom can attach to carbon loosely, with a single bond or a double bond, allowing flexibility in reactions that can lead to novel organic molecules.

Using this model, he has accurately predicted the products in various organic reactions. For example, a gold atom attached to the chemical phosphine and dispersed homogeneously in a liquid can efficiently convert alkynes to pyrroles, which are ring structures found in many drugs. Gold-phosphine catalysis also can create an unusual carbon triangle called cyclopropane that is used in industrial organic synthesis.

"We can make cyclopropanes without the need for explosive diazo compounds," Toste said.

Toste predicts that gold catalysts also will be very useful in producing chemicals with a specific handedness, that is, a left-handed molecule, but not its right-handed or mirror image. Such stereoselective reactions are becoming more important because many drugs come in right- and left-handed forms, but only one form is effective in the body. The most efficient synthesis would produce only the effective form, not its ineffective mirror image. He is tuning the phospine attached to gold to affect this stereoselectivity.

"The future of gold catalysis still involves a lot of theoretical work, and we need to understand more about how it works," Toste said. "But already, some of these reactions are being used by medicinal chemists, and it's a really exciting field."

Source: University of California - Berkeley

Explore further: Why size matters for gold as a catalyst

Related Stories

Why size matters for gold as a catalyst

September 6, 2018

Gold is the noblest metal—the most resistant to oxidation. However, nano-size gold has a unique ability to perform as a catalyst, even at low temperatures. The underlying mechanism for this size-dependent change in properties ...

Real-time imaging of chemical processes

July 24, 2018

National University of Singapore scientists observe the real-time formation of hollow structures in the galvanic replacement (GR) reaction between silver and gold with nanometre resolution, gaining insights on the mechanisms ...

How gold nanoparticles could improve solar energy storage

July 12, 2018

Star-shaped gold nanoparticles, coated with a semiconductor, can produce hydrogen from water over four times more efficiently than other methods—opening the door to improved storage of solar energy and other advances that ...

New chemical compounds make catalysts more efficient

July 10, 2018

A team from the Chair of Inorganic Chemistry II at Ruhr-Universität Bochum has developed new chemical compounds that make catalysts more efficient. With their electronic and spatial properties, the new class of what are ...

Recommended for you

New battery gobbles up carbon dioxide

September 21, 2018

A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which ...

Three NASA missions return first-light data

September 21, 2018

NASA's continued quest to explore our solar system and beyond received a boost of new information this week with three key missions proving not only that they are up and running, but that their science potential is exceptional. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gianluigi
not rated yet Oct 15, 2008
the theory is interesting. But, if so, why copper, whih much less electrons than silver is yellow too? and why lead, with much more electrons than gold, is colourless and doesn't show any catalithic effect?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.