Electron storage added to molecular package that converts light to chemical energy

March 28, 2007

The Virginia Tech chemistry research group that has been creating molecular complexes that use solar energy to produce hydrogen from water has added an additional capacity to their supramolecule.

They will present the research at the 233rd national meeting of the American Chemical Society in Chicago March 25-29.

Karen Brewer, professor of chemistry, explains that the new, more robust molecules still harness light and covert it to chemical energy by splitting water to produce hydrogen. “What is different is the way the systems function. It is a three part molecule. The first part is a light absorber, harnessing visible and UV light. The second part is an electron reservoir. The third part is the catalysis to make hydrogen from water.” All of these sub-units are coupled into one large supramolecular assembly.

She said the new molecules are expected to enhance efficiency. “It is a different kind of energy production reaction – not married to hydrogen but linked to whatever catalyst is selected. For example, we can conceivably use carbon dioxide to produce methanol or other reduced forms of carbon dioxide.”

The new molecular complex can also bind to DNA, providing applications in another Brewer group project – light-activated drug delivery to disease sites.

Source: Virginia Tech

Explore further: NIR-driven H2 evolution from water: Expanding wavelength range for solar energy conversion

Related Stories

Recommended for you

New paper answers causation conundrum

November 17, 2017

In a new paper published in a special issue of the Philosophical Transactions of the Royal Society A, SFI Professor Jessica Flack offers a practical answer to one of the most significant, and most confused questions in evolutionary ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.