Not so easy to imitate nature

March 19, 2007

The idea was to solve the problem of de-icing airplane wings. But the result of the research project at Linköping University in Sweden was just the opposite: the possibility of artificially freezing ice at high temperatures.

Biomimetics is the science that tries to imitate nature’s solutions to various problems. One approach is to apply biological principles to the construction of new products, another to copy molecular building blocks for new purposes.

Researchers at the Section for Molecular Physics at Linköping University in Sweden got interested in proteins that exist in fish in polar areas, such as flounders, in order to keep their blood from freezing. Arctic sea water can reach -2 degrees centigrade, a temperature where normal fish would freeze to death.

Doctoral student Annika Borgh started a project to try to utilize properties of these anti-freeze proteins, which exist in two forms: with and without a sugar group attached. The proteins bind to the surface of tiny ‘ice embryos’ and prevent the formation of ice crystals.

In the fish, the protein is loose in the blood, but Annika Borgh wanted to have them on a surface, such as on an airplane wing, where they might be able to prevent the formation of ice, which is a huge problem at airports in winter. But the proteins don’t like being on surfaces, so she developed molecules with sugar and methyl groups, though without the protein skeleton as such. These were applied to a plate with a surface of gold, where they organized themselves in a so-called monolayer.

Water was condensed on the surface, and the plate was chilled. The surprising result was that the water froze at a higher temperature when there were anti-freeze molecules on the surface than when they weren’t there.

“The anti-freeze protein probably functions only in solutions, where it can prevent ice embryos from forming from all directions. Instead, we should be able to make use of the reverse effect, to freeze ice rinks using less energy, for instance, or perhaps to develop a polymer with these properties that can be painted onto a surface,” says Annika Borgh.

Source: The Swedish Research Council

Explore further: Destabilization processes in foam

Related Stories

Destabilization processes in foam

September 19, 2017

Oktoberfest is an exciting cultural event, but it is also a source of inspiration for materials scientists and engineers. Not the beer itself, but rather the beer foam is a source of inspiration.

Something in the water—life after mercury poisoning

September 26, 2017

From 1932 to 1968, hundreds of tonnes of mercury seeped into the clear waters of Minamata Bay, Japan, causing health and environmental problems still felt today. As the first global treaty on mercury finally comes into force, ...

Casting into the past helps reveal fishing's future

September 20, 2017

Intensive fishing and climate change pose an unprecedented threat to biodiversity in the world's oceans, but reconstructing how the past 500 years of human activity on the seas has transformed marine life could help to reveal ...

Uncovering the tricks of nature's ice-seeding bacteria

October 23, 2013

Like the Marvel Comics superhero Iceman, some bacteria have harnessed frozen water as a weapon. Species such as Pseudomonas syringae have special proteins embedded in their outer membranes that help ice crystals form, and ...

Recommended for you

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.