Slower light could mean faster computers

December 22, 2006

IBM today announced its researchers have built a device capable of delaying the flow of light on a silicon chip, a requirement to one day allow computers to use optical communications to achieve better performance.

Researchers have known that the use of optical instead of electrical signals for transferring data within a computer chip might result in significant performance enhancements since light signals can carry more information faster. Yet, "buffering" or temporarily holding data on the chip is critical in controlling the flow of information, so a means for doing so with light signals is necessary. The work announced today outlines just such a means for buffering optical signals on a chip.

"Today's more powerful microprocessors are capable of performing much more work if we can only find a way to increase the flow of information within a computer," said Dr. T.C. Chen, vice president of Science and Technology for IBM Research. "As more and more data is capable of being processed on a chip, we believe optical communications is the way to eliminate these bottlenecks. As a result, the focus in high-performance computing is shifting from improvements in computation to those in communication within the system."

Long delays can be achieved by passing light through optical fibers. However, the current "delay line" devices for doing so are too large for use on a microchip, where space is precious and expensive. For practical on-chip integration, the area of a delay line should be well below one square millimeter and its construction should be compatible with current chip manufacturing techniques.

IBM scientists were able to meet this size restriction and achieve the necessary level of control of the light signal by passing it through a new form of silicon-based optical delay line built of up to 100 cascaded "micro-ring resonators," built using current silicon complementary metal-oxide-semiconductor (CMOS) fabrication tools. When the optical waveguide is curved to form a ring, light is forced to circle multiple times, delaying its travel. The optical buffer device based on this simple concept can briefly store 10 bits of optical information within an area of 0.03 square millimeters. That's 10 percent of the storage density of a floppy disk, and a great improvement compared to previous results. This advancement could potentially lead to integrating hundreds of these devices on one computer chip, an important step towards on-chip optical communications.

The report on this work, "Ultra-compact optical buffers on a silicon chip," by Fengnian Xia, Lidija Sekaric and Yurii Vlasov of IBM's T.J.Watson Research Center in Yorktown Heights, N.Y., is published December 22 in the premiere issue of the journal Nature Photonics.

Source: IBM

Explore further: Quantum internet goes hybrid

Related Stories

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Electronics and optics on one chip

November 9, 2017

Electronics and light don't go well together on a standard "CMOS' chip. Researcher Satadal Dutta of the University of Twente now succeeds in introducing a light connection into the heart of a semiconductor chip. In this way, ...

Making fluorescent chips using an inkjet printer

October 26, 2017

Every mealtime it's the same thing. Your child clutching their stomach and complaining about tummy ache. You as parents are at your wits' end, and nothing you try from your home medicine cabinet is having any effect. Could ...

Chip-based sensors with incredible sensitivity

November 2, 2017

In London's St. Paul's Cathedral, a whisper can be heard far across the circular whispering gallery as the sound curves around the walls. Now, an optical whispering gallery mode resonator developed by Penn State electrical ...

Recommended for you

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.