Laser experiments reveal strange properties of superfluids

December 22, 2006
Laser experiments reveal strange properties of superfluids
Princeton University researchers used lasers to model colliding shock waves in superfluids. Credit: Jason Fleischer/Princeton University

Princeton University electrical engineers are using lasers to shed light on the behavior of superfluids -- strange, frictionless liquids that are difficult to create and study. Their technique allows them to simulate experiments that are difficult or impossible to conduct with superfluids.

The odd behavior of particles in superfluids, which move together instead of at random, has been observed in light waves that pass through certain materials known as nonlinear crystals. The team relied on this underappreciated correlation to use laser light as a substitute, or model, for superfluids in experiments. Their results will be published in the January 2007 issue of Nature Physics.

Their work could heighten the current understanding of condensed matter physics as well as lead to advances in sensor technology, atomic trapping and optical communications.

"Once you realize you can use light to model a superfluid, a new world opens up," said Jason Fleischer, a Princeton assistant professor of electrical engineering who led the team. "An entire field of physics is interested in studying the dynamics of superfluids, but the experiments are difficult to do. It's a lot easier to conduct the experiments with lasers."

Fleischer and Princeton Engineering graduate students Wenjie Wan and Shu Jia validated their technique by generating results that matched data from previous superfluid experiments. They went on to study superfluid waves and interactions that had not been considered before, either theoretically or experimentally. For instance, they explored the collisions of circular waves similar to those created by drops of water falling into a puddle.

"Shock waves are an example of a bigger picture idea," Fleischer said. He plans to explore other superfluid phenomena in future optical experiments.

Citation: Wan, Jia and Fleischer. Dispersive, superfluid-like shock waves in nonlinear optics. Nature Physics. January 2007. doi: 10.1038/nphys486.

Source: Princeton University

Explore further: A quantum leap toward expanding the search for dark matter

Related Stories

A quantum leap toward expanding the search for dark matter

September 25, 2018

Figuring out how to extend the search for dark matter particles – dark matter describes the stuff that makes up an estimated 85 percent of the total mass of the universe yet so far has only been measured by its gravitational ...

Superfluids: Observation of 'second sound' in a quantum gas

May 15, 2013

Second sound is a quantum mechanical phenomenon, which has been observed only in superfluid helium. Physicists from the University of Innsbruck, Austria, in collaboration with colleagues from the University of Trento, Italy, ...

A stream of superfluid light

June 5, 2017

Scientists have known for centuries that light is composed of waves. The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that ...

Recommended for you

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

Stretched quantum magnetism uncovered by quantum simulation

December 13, 2018

By studying ultracold atoms trapped in artificial crystals of light, Guillaume Salomon, a postdoc at the Max-Planck-Institute of Quantum Optics and a team of scientists have been able to directly observe a fundamental effect ...

The secret life of cloud droplets

December 13, 2018

Do water droplets cluster inside clouds? Researchers confirm two decades of theory with an airborne imaging instrument.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.