Researchers Create DNA Logic Circuits That Work in Test Tubes

December 8, 2006

Computers and liquids are not very compatible, as many a careless coffee-drinking laptop owner has discovered. But a new breakthrough by researchers at the California Institute of Technology could result in future logic circuits that literally work in a test tube--or even in the human body.

In the current issue of the journal Science, a Caltech group led by computer scientist Erik Winfree reports that they have created DNA logic circuits that work in salt water, similar to an intracellular environment. Such circuits could lead to a biochemical microcontroller, of sorts, for biological cells and other complex chemical systems. The lead author of the paper is Georg Seelig, a postdoctoral scholar in Winfree's lab.

"Digital logic and water usually don't mix, but these circuits work in water because they are based on chemistry, not electronics," explains Winfree, an associate professor of computer science and computation and neural systems who is also a recipient of a MacArthur genius grant.

Rather than encoding signals in high and low voltages, the circuits encode signals in high and low concentrations of short DNA molecules. The chemical logic gates that perform the information processing are also DNA molecules, with each gate a carefully folded complex of multiple short DNA strands.

When a gate encounters the right input molecules, it releases its output molecule. This output molecule in turn can help trigger a downstream gate--so the circuit operates like a cascade of dominoes in which each falling domino topples the next one.

However, unlike dominoes and electronic circuits, components of these DNA circuits have no fixed position and cannot be simply connected by a wire. Instead, the chemistry takes place in a well-mixed solution of molecules that bump into each other at random, relying on the specificity of the designed interactions to ensure that only the right signals trigger the right gates.

"We were able to construct gates to perform all the fundamental binary logic operations--AND, OR, and NOT," explains Seelig. "These are the building blocks for constructing arbitrarily complex logic circuits."

As a demonstration, the researchers created a series of circuits, the largest one taking six inputs processed by 12 gates in a cascade five layers deep. While this is not large by the standards of Silicon Valley, Winfree says that it demonstrates several design principles that could be important for scaling up biochemical circuits.

"Biochemical circuits have been built previously, both in test tubes and in cells," Winfree says. "But the novel thing about these circuits is that their function relies solely on the properties of DNA base-pairing. No biological enzymes are necessary for their operation.

"This allows us to use a systematic and modular approach to design their logic circuits, incorporating many of the features of digital electronics," Winfree says.

Other advantages of the approach are signal restoration for the production of correct output even when noise is introduced, and standardization of the chemical-circuit signals by the use of translator gates that can use naturally occurring biological molecules, such as microRNA, as inputs. This suggests that the DNA logic circuits could be used for detecting specific cellular abnormalities, such as a certain type of cancer in a tissue sample, or even in vivo.

"The idea is not to replace electronic computers for solving math problems," Winfree says. "Compared to modern electronic circuits, these are painstakingly slow and exceedingly simple. But they could be useful for the fast-growing discipline of synthetic biology, and could help enable a new generation of technologies for embedding 'intelligence' in chemical systems for biomedical applications and bionanotechnology."

The other authors of the paper are David Soloveichik and Dave Zhang, both Caltech grad students in computation and neural systems.

Source: Caltech

Explore further: Scientists use light to control the logic networks of a cell

Related Stories

Scientists use light to control the logic networks of a cell

January 5, 2017

Proteins are the workhorse molecules of life. Among their many jobs, they carry oxygen, build tissue, copy DNA for the next generation, and coordinate events within and between cells. Now scientists at the University of North ...

A programming language for living cells

March 31, 2016

MIT biological engineers have created a programming language that allows them to rapidly design complex, DNA-encoded circuits that give new functions to living cells.

Recommended for you

Study on prehistoric violence published

February 20, 2017

A longtime Cal Poly Pomona anthropology professor who studies violence among prehistoric people in California has been published in a prestigious journal.

'Tully monster' mystery is far from solved, group argues

February 20, 2017

Last year, headlines in The New York Times, The Atlantic, Scientific American and other outlets declared that a decades-old paleontological mystery had been solved. The "Tully monster," an ancient animal that had long defied ...

Mathematical models predict how we wait in line, traffic

February 17, 2017

As New Jersey drivers approach the George Washington Bridge to enter New York City, a digital sign flashes overhead with estimates of the delays on the upper and lower levels of the bridge. Most drivers choose the level with ...

Remembering the need to forget

February 17, 2017

We are built to forget – it is a psychological necessity. But in a social media world that captures – and, more importantly, remembers – everything we say and do, forgetting is becoming a thing of the past. If we lose ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.