Chronic Jet-Lag Conditions Hasten Death in Aged Mice

November 6, 2006

Researchers at the University of Virginia have found that aged mice undergoing weekly light-cycle shifts—similar to those that humans experience with jet lag or rotating shift work—experienced significantly higher death rates than did old mice kept on a normal daylight schedule over the same eight-week period.

The findings may not come as a great surprise to exhausted globetrotting business travellers, but the research nonetheless provides, in rather stark terms, new insight into how the disruption of circadian rhythms can impact well-being and physiology, and how those impacts might change with age.

The mouse study is reported by a group at U.Va. led by Gene Block, professor of biology, and Alec Davidson, research scientist, and appears in the November 7th issue of the journal Current Biology, published by Cell Press.

The researchers were led to examine a possible link between jet lag and mortality by something they had noticed in an earlier, unrelated study: A surprising fraction of old (but genetically altered) rats exposed to a six-hour advance in their light cycle died after the shift in schedule.

In the new work, the researchers examined the mortality link in earnest by looking at how young mice and old mice fared when subjected to two different types of light-cycle shifts. In one regimen, mice experienced a six-hour forward shift once a week, while in the other, mice experienced a six-hour backward shift. A “control” group of young and old mice did not experience any schedule shifts.

The researchers found that the young mice generally survived well under the various conditions. In contrast, the light-cycle shifts had a marked effect on the survivorship of the old mice. While 83% of old mice survived under the normal schedule, 68% survived under the backward-shift regimen and 47% survived under the forward-shift regimen.

Past work has also linked changes in light schedule with death in other animals and under different experimental circumstances, but the findings here indicate that there may be a differential effect of mortality depending on the direction of the schedule shift—forward or backward. Schedule “advancers” did more poorly in the present experiment than did “delayers.”

Notably, the researchers found that chronic stress—as measured by daily corticosterone levels—did not increase in the old mice experiencing the light-cycle shifts. The underlying cause of the increased mortality is not yet clear, but could involve sleep deprivation or immune-system disruption.

The body’s physiological reaction to time change may be complex. Past research has indicated that circadian clocks govern physiological rhythms in a great variety of tissues in the body, and that different aspects of the physiological clock can adjust to schedule changes at different rates. The researchers speculate that the internal lack of synchrony among different physiological oscillations may have serious health consequences that are exacerbated in aged animals.

Source: University of Virginia

Explore further: New wake-promoting node pinpointed in brain

Related Stories

New wake-promoting node pinpointed in brain

November 10, 2017

Scientists have identified an additional group of cells in the brain responsible for keeping us awake: the supramammillary nucleus, part of the caudal hypothalamus.

Mysterious DNA modification seen in stress response

October 24, 2017

With advances in genomics, scientists are discovering additional components of the DNA alphabet in animals. Do these unusual chemical modifications of DNA have a special meaning, or are they just signs that cellular machines ...

Comparing cancer drug effectiveness from cells to mice to man

September 6, 2017

Science is very good at determining how drugs work in experimental models. New research out of Dartmouth's Norris Cotton Cancer Center led by Alan Eastman, PhD, helps to bridge the gap when it comes to ensuring that drugs ...

Recommended for you

A possible explanation for how germlines are rejuvenated

November 23, 2017

(Phys.org)—A pair of researchers affiliated with the University of California and Calico Life Sciences, has discovered a possible explanation regarding how human germlines are rejuvenated. In their paper published in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.