Otherworldly bacteria that use radiated water for food discovered two miles down

October 19, 2006
Otherworldly bacteria discovered two miles down
About two miles below the ground in a South African gold mine, co-author Duane Moser stands next to the fracture zone (white area) where the one-of-a-kind bacteria were found. Credit: Images courtesy Li-Hung Lin and Duane Moser

Researchers have discovered an isolated, self-sustaining, bacterial community living under extreme conditions almost two miles deep beneath the surface in a South African gold mine. It is the first microbial community demonstrated to be exclusively dependent on geologically produced sulfur and hydrogen and one of the few ecosystems found on Earth that does not depend on energy from the Sun in any way. The discovery, appearing in the October 20 issue of Science, raises the possibility that similar bacteria could live beneath the surface of other worlds, such as Mars or Jupiter's moon Europa.

"These bacteria are truly unique, in the purest sense of the word," said lead author Li-Hung Lin, now at National Taiwan University, who performed many of the analyses as a doctoral student at Princeton and as a postdoctoral researcher at the Carnegie Institution's Geophysical Laboratory.

As Lin explained: "We know how isolated the bacteria have been because our analyses show that the water they live in is very old and hasn't been diluted by surface water. In addition, we found that the hydrocarbons in the local environment did not come from living organisms, as is usual, and that the source of the hydrogen (H2) needed for their respiration comes from the decomposition of water (H2O) by radioactive decay of uranium, thorium, and potassium."

Humans and most other land-dwelling organisms ultimately get their energy from the Sun, with photosynthetic plants forming the base of the food web. But in dark places where sunlight doesn't reach, life has to depend on other energy sources. Other communities of "chemoautotrophs"--a word chained together from Greek roots meaning "chemical self-nourishment"--have been found in exotic places such as aquifers, petroleum reservoirs, and vents linked to deep-sea volcanoes. Yet these communities all depend at least in part on nutrients that can be traced back to photosynthetic plants or bacteria.

The international team led by T. C. Onstott of Princeton University, which also includes Carnegie staff scientist Douglas Rumble and former Carnegie postdoctoral researcher Pei-Ling Wang, also now at National Taiwan University, found the community in a rock fracture that intersects the Mponeng gold mine near Johannesburg, South Africa. Water trapped in the fracture is home to the otherworldly bacteria.

Using genetic tools, the team discovered that there is very little species diversity in the rock fracture community. Compared with bacteria in the water used for mining, the fracture water is dominated by one type of bacteria related to Desulfotomaculum, which is known to get energy from the reduction of sulfur compounds.

"We also believe that the sulfate used by these creatures is left-over from ancient groundwater mixed with ancient hydrothermal fluid. We can detect that because the chemical signature arises from interacting with the fracture's wall rock," commented Rumble. "It is possible that communities like this can sustain themselves indefinitely, given enough input from geological processes. Time will tell how many more we might find in Earth's crust, but it is especially exciting to ponder whether they exist elsewhere in the solar system."

Source: Carnegie Institution

Explore further: Researchers propose conceptual device for solar-powered water sanitation

Related Stories

Carnegie donates landmark clones to biology

August 6, 2009

With the information explosion, it's remarkable that so little is known about the interactions that proteins have with each other and the protective membrane that surrounds a cell. These interactive, so-called membrane proteins ...

Some Pittsburgh schools closed for the day over water issue

February 1, 2017

Insufficient chlorine in Pittsburgh's public water supply led to the closure Wednesday of nearly two dozen grade schools and a boil-water advisory in neighborhoods that include the University of Pittsburgh and Carnegie Mellon ...

Toxic waters and climate change—how are they linked?

July 20, 2016

It is imperative that society learn more about how climate change contributes to episodic and very severe water quality impairments, such as the harmful algal bloom that caused Florida to declare a state of emergency earlier ...

New twist on life's power source

March 11, 2008

A startling discovery by scientists at the Carnegie Institution puts a new twist on photosynthesis, arguably the most important biological process on Earth. Photosynthesis by plants, algae, and some bacteria supports nearly ...

Recommended for you

Using CRISPR to make warmer, less fatty pigs

October 24, 2017

A team of researchers with members from several institutions in China and one in the U.K. has used the CRISPR-Cas 9 gene editing technique to cause test pigs to retain less bodyfat. In their paper published in Proceedings ...

Understanding how electrons turn to glass

October 24, 2017

Researchers at Tohoku University have gained new insight into the electronic processes that guide the transformation of liquids into a solid crystalline or glassy state.

Chemists introduce novel method to separate isotopes

October 24, 2017

Separating different versions of elements—isotopes—is an excruciatingly difficult task: They differ by just one or two extra neutrons, an infinitesimal difference in mass. But University of Chicago researchers announced ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.