Researchers develop bistable nano switch

October 13, 2006

Carbon nanotubes (CNT) have been under intense study by scientists all over the world for more than a decade and are being thought of as ideal building blocks for nanoelectromechanical systems (NEMS). A type of one-dimensional structure with high-aspect ratio, carbon nanotubes have emerged as a promising material because of their many impressive mechanical, electrical and chemical properties.

Now scientists from Northwestern University have demonstrated a novel carbon nanotube-based nanoelectromechanical switch exhibiting bistability based on current tunneling. The device could help advance technological developments in memory chips and electronic sensing devices.

The research is published online by the scientific journal Small.

"We believe the unique characteristics of this nano device will likely lead to many high-impact applications in the field of nanoelectronics and nanosensors," said Horacio Espinosa, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. Espinosa and Changhong Ke, a former graduate student of Espinosa's, co-authored the paper.

Since the invention of the integrated circuit (IC), the semiconductor industry has boomed following the famous Moore's law. However, as the characteristic dimension achievable by various photolithography techniques approaches its physical limits, scientists are searching for new materials and new device concepts to be able to continue the large-scale integration trend.

"Although several carbon nanotube-based NEMS devices have been proposed, frankly, none of them has reached the level of commercial success," said Espinosa. "There are many challenges associated with nanofabrication and reliability."

Nanoscale manufacturing is complex and too expensive, imposing significant challenges to the design of nano devices. Assessing device reliability based on nanoscale experimentation is one big challenge. For example, placement of nano-objects at desired locations is difficult and lacks reproducibility. Likewise, real-time observation and characterization of mechanical motion requires the use of in-situ electron microscopy and electronic measurement techniques capable of controlling noise and parasitic effects.

Espinosa and his team solved some of these issues by designing and demonstrating a tunneling bistable switch. The device is made of a free suspended multiwalled carbon nanotube interacting electrostatically with an underlying electrode. In the device circuit, there is a resistor in series with the nanotube, which plays an important role in the functioning of the device by adjusting the voltage drop between the nanotube and the underlying electrode.

"The design of the device looks very simple, but the theories behind it are very complex and span several disciplines, including quantum mechanics, electronics and mechanics," said co-inventor Ke, now a post-doctoral fellow at Duke University. "Also, a major advantage of our device is its geometry, which is fully compatible with current manufacturing techniques for mass production."

Espinosa and Ke demonstrated the behaviors of the device by mounting individual carbon nanotubes to the tip of a tungsten probe using a nanomanipualtor inside a scanning electron microscope. Then the nanotube was actuated by applying a potential to an adjustable micron-size gap between the nanotube and an electrode. The motion of the nanotube was recorded by the electron microscope, and the current in the circuit was recorded by a source-measurement unit.

Northwestern has filed a patent application covering the concept of the bistable tunneling device and its application and is seeking commercial partners to develop the technology. The potential applications of the device include NEMS switches, random-access memory elements and logic devices.

Source: Northwestern University

Explore further: How carbon nanotubes could be used in future electronic devices

Related Stories

How carbon nanotubes could be used in future electronic devices

November 22, 2017

A team of Skoltech scientists, in collaboration with researchers from the IBM Watson Research Center, have shed light on the behavior of electrical contacts in carbon semiconductor nanotubes, which could pave the way to next-generation ...

NREL develops switchable solar window

November 28, 2017

Thermochromic windows capable of converting sunlight into electricity at a high efficiency have been developed by scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

The electronic origins of fluorescence in carbon nanotubes

November 28, 2017

Technological progress is often driven by materials science. High-tech devices require "smart" materials that combine a range of properties. An impressive current example is carbon nanotubes (CNTs)—single sheets of carbon ...

Tuning the wavelength of fluorescent carbon tubes

November 28, 2017

Carbon is not just the most important element for life, it also has fascinating properties of its own. Graphene—a pure carbon sheet just one atom thick—is one of the strongest materials. Roll graphene into a cylinder ...

Recommended for you

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

Researchers discover new way to power electrical devices

December 11, 2017

A team of University of Alberta engineers developed a new way to produce electrical power that can charge handheld devices or sensors that monitor anything from pipelines to medical implants.The discovery sets a new world ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.