Alloy of hydrogen and oxygen made from water

October 26, 2006

Water, the only indispensable ingredient of life, is just about the most versatile stuff on Earth. Depending on its temperature we can heat our homes with it, bathe in it, and even strap on skates and glide across it, to name only the most common of its many forms. When subjected to high pressures, however, water can take any of more than 15 different forms.

Researchers have now used x-rays to dissociate water at high pressure to form a solid mixture--an alloy--of molecular oxygen and molecular hydrogen. The work, by a multi-institutional team that includes Russell Hemley and Ho-kwang Mao of Carnegie's Geophysical Laboratory, appears in the October 27 issue of Science.

The researchers subjected a sample of water to extremely high pressures--about 170,000 times the pressure at sea level (17 Gigapascals)--using a diamond anvil, and zapped it with high-energy x-rays. Under these conditions, nearly all the water molecules split apart and re-formed into a solid alloy of O2 and H2. X-radiation proved to be the key to cleaving the O-H bonds in water; without it, the water remained in a high-pressure form of ice known as ice VII--one of at least 15 such variants of ice that exist under high pressure and variable temperature conditions.

"We managed to hit on just the right level of x-ray energy input," explained Hemley. "Any higher, and the radiation tends to pass right through the sample. Any lower, and the radiation is largely absorbed by the diamonds in our pressure apparatus."

This rather narrow range of energy requirement explains why, in hundreds of previous high-pressure x-ray experiments, the breakdown reaction had gone undiscovered: most such experiments tend to use more energetic x-rays. The experiments also required long, multiple-hour irradiation with x-rays; such long exposures had not been attempted before.

The researchers put the alloy through its paces, subjecting it to a range of pressure, temperature, and bombardment with x-ray and laser radiation. As long as the sample remained under pressure equivalent to about 10,000 times atmospheric pressure at sea level (1 Gigapascal), it stood up to this punishment. Although the substance is clearly a crystalline solid, more experiments are needed to determine its precise crystal structure.

"The new radiation chemistry at high pressure was surprising," said lead author Wendy Mao of Los Alamos National Laboratory. "The new alloy containing the incompatible oxygen and hydrogen molecules will be a highly energetic material."

Source: Carnegie Institution

Explore further: Print your own body parts

Related Stories

Print your own body parts

February 20, 2017

John Nhial was barely a teenager when he was grabbed by a Sudanese guerrilla army and forced to become a child soldier. He was made to endure weeks of walking with so little food and water that some of his fellow captives ...

Concentrating milk at the farm does not harm milk quality

February 15, 2017

At dairies, the reverse osmosis filtration technique is extensively used to remove water from milk to be used for further processing such as e.g. cheese or milk powder. However, many resources would be saved if it was possible ...

No time to run? Tsunami pod aims to save lives—at a price

February 17, 2017

When Jeanne Johnson lived in New Orleans, she figured out how to weather hurricanes. When the family moved to Kansas City, she taught her kids to take cover from tornadoes. So when Johnson recent bought a house on Washington ...

Recommended for you

Time crystals—how scientists created a new state of matter

February 22, 2017

Some of the most profound predictions in theoretical physics, such as Einstein's gravitational waves or Higgs' boson, have taken decades to prove with experiments. But every now and then, a prediction can become established ...

Science versus the 'Horatio Alger myth'

February 22, 2017

In a new study published today in the journal PLOS ONE, Los Alamos National Laboratory scientists have taken a condensed matter physics concept usually applied to the way substances such as ice freeze, called "frustration," ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.