Landscapes from the ancient and eroded lunar far side

July 14, 2006
Landscapes from the ancient and eroded lunar far side
This image, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA's SMART-1 spacecraft, shows a highly eroded highland area close to the equator on the lunar far side -- the side of the Moon always facing away from Earth. AMIE obtained this image on 1 January 2006, from a distance of 1483 kilometres from the surface, with a ground resolution of 134 metres per pixel. The imaged area is centred at a latitude of 4.2º South and longitude 98.4º East. This image shows some highly eroded highland areas. Many craters are almost not longer visible, as they were destroyed by subsequent impacts. Credit: ESA/SMART-1/Space-X (Space Exploration Institute)

This image, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA's SMART-1 spacecraft, shows a highly eroded highland area on the lunar far side, close to the equator.

AMIE obtained this image on 1 January 2006, from a distance of 1483 kilometres from the surface, with a ground resolution of 134 metres per pixel. The imaged area is centred at a latitude of 4.2º South and longitude 98.4º East. The Moon's rotation is locked to the Earth, that is the Moon always presents roughly the same side to the Earth. We call the side facing the Earth the 'near side', while the side facing away is the 'far side'.

After the first lunar missions orbited the Moon, it was discovered that unlike the near side, the far side is lacking large lava plains, the so-called 'maria'. The far side is mainly composed of heavily cratered highlands, while only very small areas contain smooth lava plains.

The reason for this difference between near side and far side is not exactly understood. Could the tidal pull of the Earth on the Moon - just like the Moon introduces tides on the water bodies of the Earth - have resulted in such a difference?

The modelling of previous topography and gravity measurements indicate that the solid crust is thinner on the near side. As a consequence, large impacts could excavate the crust more easily on the near side, and so lava had an easier way to flow out and create maria formations.

This image shows some highly eroded highland area on the lunar far side. Many craters are almost not longer visible, as they were destroyed by subsequent impacts.

Source: ESA

Explore further: What would happen if the Earth were actually flat?

Related Stories

What would happen if the Earth were actually flat?

January 24, 2018

Welcome to the new year, 2018. The Earth has yet again made a revolution about the sun. But not so fast. If you subscribe to the idea of a flat Earth, then you'd believe that no such thing happened, because the sun rotates ...

There's a 'super blue blood Moon' on the rise (Update)

January 31, 2018

Stargazers across large swaths of the globe—from the streets of Los Angeles to the slopes of a smoldering Philippine volcano—had the chance to witness a rare "super blue blood Moon" Wednesday, when Earth's shadow bathed ...

Looking at the universe through very different 'eyes'

January 22, 2018

We are bathed in starlight. During the day we see the Sun, light reflected off the surface of the Earth and blue sunlight scattered by the air. At night we see the stars, as well as sunlight reflected off the Moon and the ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.