Similarities in Sun’s Effects on Earth and Mars

May 25, 2006

“Despite differences in the chemical compositions and densities of Earth’s and Mars’ atmospheres, we now have a definitive example showing that both planets’ atmospheres react similarly to varying levels of solar energy impacting them during the sun’s 25-day rotation,” says Elsayed Talaat, a space scientist with the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md.

Talaat’s findings, which will be presented in an AGU session (Comparative Planetology: Atmospheres and Aeronomy I) on May 26, could help the atmospheric science community better understand the relationship between the sun and its effects on planetary atmospheres.

Comparing limited ionospheric data sets acquired in 2003 by NASA’s Mars Global Surveyor (MGS) and the agency’s TIMED SEE instrument (Solar Extreme Ultraviolet Experiment), Talaat says his findings provide evidence that the photochemistry of Mars’ ionosphere responds similarly as Earth’s to solar inputs.

“The upper atmospheres of both planets are impacted by varying levels of high-energy solar X-rays and extreme ultraviolet radiation during the sun’s rotation – the same type of data collected by the SEE instrument,” Talaat says. “I looked at the variation in solar irradiance found in SEE’s data and correlated that with the variability in Mars’ ionosphere.”

To compensate for the sun’s different rotational time periods as would be perceived from Earth and Mars, he shifted SEE’s data to match the Mars timeframe. When two charts depicting the Mars peak ion density and solar activity levels during a common timeframe were overlaid, the plots aligned.

The Mars ionospheric profiles were retrieved from the radio transmissions from NASA’s MGS Radio Science Experiment led by Dr. David Hinson of Stanford University. Data are made available to researchers worldwide via http://nova.stanford.edu/projects/mod/.

Since its launch in 2001, TIMED has been exploring one of Earth’s last atmospheric frontiers – the Mesosphere and Lower Thermosphere/Ionosphere (MLTI) – collecting valuable data during various phases of the solar cycle. To date, TIMED and a worldwide network of ground-based observation sites have collected unprecedented global observations of the MLTI region’s basic structure, temperature, pressure, wind and chemical composition, as well as measurements of the region’s energy inputs and outputs. TIMED is the first mission to simultaneously measure all critical parameters so that scientists can better understand the processes that control changes in the upper atmosphere.

TIMED is the first mission in NASA’s Solar Terrestrial Probes Program, and is part of the Heliophysics Great Observatory – a collection of NASA’s sun-Earth-focused missions. NASA Goddard's Solar Terrestrial Probes Program Office, in Greenbelt, Md., oversees the mission, sponsored by NASA's Science Mission Directorate, Washington, D.C. APL built and now operates the spacecraft, leads the project's science effort and manages the mission's Science Data Center for NASA.

For more information, visit http://www.timed.jhuapl.edu.

Source: Johns Hopkins University

Explore further: Elon Musk releases details of plan to colonise Mars – here's what a planetary expert thinks

Related Stories

NASA completes study of future 'ice giant' mission concepts

June 21, 2017

A NASA-led and NASA-sponsored study of potential future missions to the mysterious "ice giant" planets Uranus and Neptune has been released—the first in a series of mission studies NASA will conduct in support of the next ...

Opportunity reaches 'Perseverance Valley' precipice

June 19, 2017

Now well into her 13th year roving the Red Planet, NASA's astoundingly resilient Opportunity rover has arrived at the precipice of "Perseverance Valley" – overlooking the upper end of an ancient fluid-carved valley on ...

Recommended for you

Arp 299: Galactic Goulash

June 26, 2017

What would happen if you took two galaxies and mixed them together over millions of years? A new image including data from NASA's Chandra X-ray Observatory reveals the cosmic culinary outcome.

Topsy-turvy motion creates light switch effect at Uranus

June 26, 2017

More than 30 years after Voyager 2 sped past Uranus, Georgia Institute of Technology researchers are using the spacecraft's data to learn more about the icy planet. Their new study suggests that Uranus' magnetosphere, the ...

Artificial brain helps Gaia catch speeding stars

June 26, 2017

With the help of software that mimics a human brain, ESA's Gaia satellite spotted six stars zipping at high speed from the centre of our galaxy to its outskirts. This could provide key information about some of the most obscure ...

The shapes of galaxies

June 26, 2017

Since Edwin Hubble proposed his galaxy classification scheme in 1926, numerous studies have investigated the physical mechanisms responsible for the shapes of spiral and elliptical galaxies. Because the processes are complex, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.