Similarities in Sun’s Effects on Earth and Mars

May 25, 2006

“Despite differences in the chemical compositions and densities of Earth’s and Mars’ atmospheres, we now have a definitive example showing that both planets’ atmospheres react similarly to varying levels of solar energy impacting them during the sun’s 25-day rotation,” says Elsayed Talaat, a space scientist with the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md.

Talaat’s findings, which will be presented in an AGU session (Comparative Planetology: Atmospheres and Aeronomy I) on May 26, could help the atmospheric science community better understand the relationship between the sun and its effects on planetary atmospheres.

Comparing limited ionospheric data sets acquired in 2003 by NASA’s Mars Global Surveyor (MGS) and the agency’s TIMED SEE instrument (Solar Extreme Ultraviolet Experiment), Talaat says his findings provide evidence that the photochemistry of Mars’ ionosphere responds similarly as Earth’s to solar inputs.

“The upper atmospheres of both planets are impacted by varying levels of high-energy solar X-rays and extreme ultraviolet radiation during the sun’s rotation – the same type of data collected by the SEE instrument,” Talaat says. “I looked at the variation in solar irradiance found in SEE’s data and correlated that with the variability in Mars’ ionosphere.”

To compensate for the sun’s different rotational time periods as would be perceived from Earth and Mars, he shifted SEE’s data to match the Mars timeframe. When two charts depicting the Mars peak ion density and solar activity levels during a common timeframe were overlaid, the plots aligned.

The Mars ionospheric profiles were retrieved from the radio transmissions from NASA’s MGS Radio Science Experiment led by Dr. David Hinson of Stanford University. Data are made available to researchers worldwide via http://nova.stanford.edu/projects/mod/.

Since its launch in 2001, TIMED has been exploring one of Earth’s last atmospheric frontiers – the Mesosphere and Lower Thermosphere/Ionosphere (MLTI) – collecting valuable data during various phases of the solar cycle. To date, TIMED and a worldwide network of ground-based observation sites have collected unprecedented global observations of the MLTI region’s basic structure, temperature, pressure, wind and chemical composition, as well as measurements of the region’s energy inputs and outputs. TIMED is the first mission to simultaneously measure all critical parameters so that scientists can better understand the processes that control changes in the upper atmosphere.

TIMED is the first mission in NASA’s Solar Terrestrial Probes Program, and is part of the Heliophysics Great Observatory – a collection of NASA’s sun-Earth-focused missions. NASA Goddard's Solar Terrestrial Probes Program Office, in Greenbelt, Md., oversees the mission, sponsored by NASA's Science Mission Directorate, Washington, D.C. APL built and now operates the spacecraft, leads the project's science effort and manages the mission's Science Data Center for NASA.

For more information, visit http://www.timed.jhuapl.edu.

Source: Johns Hopkins University

Explore further: NASA selects instrument for future international mission to Martian moons

Related Stories

September 2017's intense solar activity viewed from space

October 27, 2017

September 2017 saw a spate of solar activity, with the Sun emitting 27 M-class and four X-class flares and releasing several powerful coronal mass ejections, or CMEs, between Sept. 6-10. Solar flares are powerful bursts of ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.