Scientists Find Closest Pair of Supermassive Black Holes

May 1, 2006
The Very Long Baseline Array (VLBA)
The Very Long Baseline Array (VLBA). Credit: NRAO/AUI/NSF

Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found the closest pair of supermassive black holes ever discovered in the Universe -- a duo of monsters that together are more than 150 million times more massive than the Sun and closer together than the Earth and the bright star Vega.

"These two giant black holes are only about 24 light-years apart, and that's more than 100 times closer than any pair found before," said Cristina Rodriguez, of the University of New Mexico (UNM) and Simon Bolivar University in Venezuela. Black holes are concentrations of mass with gravity so strong that not even light can escape them.

The black hole pair is in the center of a galaxy called 0402+379, some 750 million light-years from Earth. Astronomers presume that each of the supermassive black holes was once at the core of a separate galaxy, then the two galaxies collided, leaving the black holes orbiting each other. The black holes orbit each other about once every 150,000 years, the scientists say.

"If two black holes like these were to collide, that event would create the type of strong gravitational waves that physicists hope to detect with instruments now under construction," said Gregory Taylor, of UNM. The physicists will need to wait, though: the astronomers calculate that the black holes in 0402+379 won't collide for about a billion billion years.

"There are some things that might speed that up a little bit," Taylor remarked.

An earlier VLBA study of 0402+379, an elliptical galaxy, showed the pair of radio-wave-emitting objects near its core. Further studies using the VLBA and the Hobby-Eberly Telescope in Texas, revealed that the pair of objects is indeed a pair of supermassive black holes.

"We needed the ultra-sharp radio 'vision' of the VLBA, particularly at the high radio frequencies of 22 and 43 GigaHertz, to get the detail needed to show that those objects are a pair of black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy.

"Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found.

Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna.

"Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs.

Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their results have been accepted for publication in the Astrophysical Journal.

Source: National Radio Astronomy Observatory

Explore further: Blazar's brightness cycle confirmed by NASA's Fermi mission

Related Stories

Blazar's brightness cycle confirmed by NASA's Fermi mission

October 18, 2018

A two-year cycle in the gamma-ray brightness of a blazar, a galaxy powered by a supermassive black hole, has been confirmed by 10 years of observations from NASA's Fermi Gamma-ray Space Telescope. The findings were announced ...

The Milky Way could be spreading life from star to star

October 15, 2018

For almost two centuries, scientists have theorized that life may be distributed throughout the universe by meteoroids, asteroids, planetoids, and other astronomical objects. This theory, known as Panspermia, is based on ...

A quantum leap toward expanding the search for dark matter

September 25, 2018

Figuring out how to extend the search for dark matter particles – dark matter describes the stuff that makes up an estimated 85 percent of the total mass of the universe yet so far has only been measured by its gravitational ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Recommended for you

NASA's First Image of Mars from a CubeSat

October 23, 2018

NASA's MarCO mission was designed to find out if briefcase-sized spacecraft called CubeSats could survive the journey to deep space. Now, MarCO—which stands for Mars Cube One—has Mars in sight.

Ultra-close stars discovered inside a planetary nebula

October 23, 2018

An international team of astronomers have discovered two stars in a binary pair that complete an orbit around each other in a little over three hours, residing in the planetary nebula M3-1. Remarkably, the stars could drive ...

Student discovers slowest ever pulsar star

October 23, 2018

An approximately 14 million year old pulsar star that is the "slowest-spinning" of its kind ever identified has been discovered by a Ph.D. student from The University of Manchester.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.