US ports vulnerable to devastating earthquake damage

May 23, 2006

If a repeat of the 1906 San Francisco earthquake were to occur, and the Port of Oakland were so severely damaged that it took as long as two years to resume full operations, what would be the impact on the U.S. economy?

U.S. ports serve as crucial gateways for international trade, but they're particularly vulnerable to damage in an earthquake. Western U.S. ports in Oakland, Los Angeles, Long Beach and Seattle are at the greatest risk for earthquake damage, but eastern U.S. ports in Charleston, S.C., and Savannah, Ga., are also at risk.

A new project led by the Georgia Institute of Technology aims to develop strategies to help safeguard ports from earthquake damage. The project, sponsored by the National Science Foundation (NSF), has $3.6 million in funding over the next five years.

"Ports are a critical civil infrastructure system," said Glenn J. Rix, a professor in Georgia Tech's School of Civil and Environmental Engineering and the project director. "Given the growth in international trade, we don't think seismic risks at ports have received the proper amount of attention. If a large portion of a major U.S. port such as Oakland or Los Angeles were out of service for a year because of an earthquake, there would be significant economic consequences for the United States."

In 1995, a magnitude 6.9 earthquake struck in Kobe, Japan, causing extensive damage to both the city and its port, the sixth largest in the world at the time. The port required $8.6 billion and two years to repair. By 2003, the Port of Kobe had fallen to 32nd largest in the world and will likely never recover the lost business.

Ports are particularly vulnerable to damage during earthquakes because wharves are often built on unstable ground that is prone to liquefaction -- a process that causes soil to lose its strength as a result of ground shaking. The large cranes used to load and unload containers from ships are also susceptible to damage from ground shaking and deformation.

The project's goal is to help port authorities and other stakeholders manage seismic risk more effectively.

"Modern ports are large, complex systems," said Rix. "Our project team includes researchers and practitioners with expertise in civil engineering, logistics, risk analysis, and social science to address seismic risk issues in every aspect of the system."

A key part of the project is to evaluate methods of preventing damage to wharves and cranes using large-scale tests. The team will perform these tests at four labs that are a part of the George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES), a program initiated by NSF to advance the field of earthquake engineering with a shared network of experimental sites and tools, an archive of earthquake data and earthquake engineering simulation software.

The team will also investigate applying the same approach to managing risks from other natural hazards, including hurricanes.

"We learned an important lesson from the experience of Gulf Coast ports following Hurricane Katrina," Rix said. "The physical damage was minor compared to the impact of the displaced labor force on port operations, which emphasized the need to examine the entire port system."

Source: Georgia Institute of Technology

Explore further: Response to natural disasters like Harvey could be helped with game theory

Related Stories

Cuba counts the cost of deadly Hurricane Irma

September 11, 2017

Cuba emerged from a 72-hour thrashing by Hurricane Irma on Monday with three-quarters of the population without power, as the country began the task of restoring basic infrastructure and services.

Humans can make rockfalls from earthquakes more dangerous

September 19, 2016

Earthquakes (including the tsunamis they generate) are Earth's most fatal natural hazard, accounting for approximately 55% of the more than 1.35 million disaster deaths in the last two decades. The US Geological Survey predicts ...

Recommended for you

New Amazon threat? Deforestation from mining

October 18, 2017

Sprawling mining operations in Brazil are destroying much more of the iconic Amazon forest than previously thought, says the first comprehensive study of mining deforestation in the world's largest tropical rainforest.

Scientists determine source of world's largest mud eruption

October 17, 2017

On May 29, 2006, mud started erupting from several sites on the Indonesian island of Java. Boiling mud, water, rocks and gas poured from newly-created vents in the ground, burying entire towns and compelling many Indonesians ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.