Researchers works on single molecular diode

March 7, 2006

Researchers from the University of South Florida, the University of Chicago and the Russian Academy of Sciences (Moscow) have recently developed the principles of operation and completed an experimental testing of a single molecule for use as a diode. A paper explaining their research has just been accepted for publication in Physical Review Letters by the American Physical Society.

“Single molecule diodes are the fundamental building blocks of an emerging technology called ‘nanoelectronics,’ a field that holds promise for application in all kinds of electronic devices, from cell phones to sensors,” said Ivan Oleynik, a physics professor at USF and coauthor of the paper. “Molecular diodes could be built a thousand times smaller than diodes in use now.”

Computer industry execs might start breathing easier because their biggest fear - that smaller and faster devices will eventually come to an end because silicon microchips will get so small that eventually they will contain too few silicon atoms to work - might be lessened as advancements in molecular electronics come to the rescue.

“Molecular electronics is enabling an area of nanoscience and technology that holds promise for the next generation of electronic devices, said Oleynik. “Single molecular electronic devices rely on organic molecules with electronic responses tailored through synthetic organic chemistry.”

Functioning at under several nanometers (a nanometer is a billionth of a meter), the molecular diode studied by the team of researchers acted as a rectifier (diode) because of the chemical asymmetry in different parts of an organic molecule comprised of both thiophene and thiazole. As a major component of electric circuitry, a diode is responsible for conducting electrical current by working something like a light switch, but allows current to flow only forward. The first diodes were large vacuum tubes, and most modern diodes are based on solid-state semiconductors.

“Molecular nanoelectronics is an exciting area of science not only because of its potential but because it is highly interdisciplinary, combining physics, chemistry, materials science, computational science and engineering,” explained Oleynik.

The team’s most recent finding and the basis for their publication was an explanation of how the intrinsic chemical asymmetry of “designer” molecules results in rectification of electrical current. The left and right parts of the organic molecule interact differently with electrons that “tunnel” through the molecule. Importantly, the electronic interactions with the left and right parts of the molecule respond differently to the change of the polarity of applied voltage.

The potentially bright future of molecular electronic technology is calculated on an ability to control molecular structure. Much of the work is yet empirical and involves “chemical intuition” as a driving force in molecular design as well as the applications of molecular devices.

“The next step is in developing the virtual integrated prototyping of molecular devices and optimizing their electronic functionalities by choosing the most appropriate chemical composition that has desirable electronic properties,” explained Oleynik. “This will require the development of a scientific understanding of electron transport through molecules as well as the introduction of new concepts and new language to explain such transport.”

Success in pioneering the field of molecular electronics would mean new life could be breathed into Moore’s Law, the prediction made by Intel’s Gordon Moore in 1965 that the density of transistors on a chip would double very 18-24 months. While Moore’s observation has been true, everyone in the industry knows that there has always been a limit to the number of atoms that would render a device smaller, cheaper, faster but still operable. New technology that would expand the limits of microelectronics has been a continuing quest.

“Molecular electronics is a viable alternative that may reach the ultimate limit of miniaturization – one molecule per transistor, diode or switch,” concluded Oleynik.

Source: University of South Florida, by Randolph Fillmore

Explore further: Measuring electrical conductance across a single molecule

Related Stories

Measuring electrical conductance across a single molecule

March 15, 2018

When noble metals, like gold, are treated with an aliphatic thiol, like alkanethiol, a uniform monolayer—a layer only one molecule deep—self-assembles on the surface. Each individual molecule can conduct electrons. This ...

Ultrashort laser pulses make greenhouse gas reactive

March 15, 2018

It is a long-cherished dream: Removing the inert greenhouse gas carbon dioxide from the atmosphere and using it as a basic material for the chemical industry. This could address two major problems at once by containing climate ...

Energy level alignment for molecular electronics

March 14, 2018

NUS physicists have found that complex electron-electron interactions change the energy levels at molecule-metal interfaces, affecting the performance of molecular electronic devices.

Molecular doorstop could be key to new tuberculosis drugs

March 13, 2018

Tuberculosis, which infects roughly one quarter of the world's population and kills nearly two million people a year, is not only deadly but ancient: signs of the disease have been found in Egyptian mummies. Despite its age, ...

Recommended for you

The Swiss army knife of smoke screens

March 18, 2018

Setting off smoke bombs is more than good fun on the Fourth of July. The military uses smoke grenades in dangerous situations to provide cover for people and tanks on the move. But the smoke arms race is on. Increasingly, ...

World's biggest battery in Australia to trump Musk's

March 16, 2018

British billionaire businessman Sanjeev Gupta will built the world's biggest battery in South Australia, officials said Friday, overtaking US star entrepreneur Elon Musk's project in the same state last year.

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.