Man-made star shines in the southern sky

February 23, 2006
First Light for the VLT Laser Guide Star Facility
First Light for the VLT Laser Guide Star Facility

On 28 January 2006, at 23:07 local time, a laser beam of several watts was launched from Yepun, the fourth 8.2m Unit Telescope of the Very Large Telescope, producing an artificial star, 90 km up in the atmosphere. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. The event was greeted with much enthusiasm and happiness by the people in the control room of one of the most advanced astronomical facilities in the world.

It was the culmination of five years of collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany.

After more than one month of integration on site, the VLT Laser Guide Star Facility saw First Light and propagated into the sky a 50cm wide, vivid, beautifully yellow beam.

"This event tonight marks the beginning of the Laser Guide Star Adaptive Optics era for ESO's present and future telescopes", said Domenico Bonaccini Calia, Head of the Laser Guide Star group at ESO and LGSF Project Manager.

Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed.

In order to work, adaptive optics needs a reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it.

The laser beam, shining at a well-defined wavelength, makes the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres glow. The laser is hosted in a dedicated laboratory under the platform of Yepun. A custom-made fibre carries the high power laser to the launch telescope situated on top of the large Unit Telescope.

An intense and exhilarating twelve days of tests followed the First Light of the Laser Guide Star (LGS), during which the LGS was used to improve the resolution of astronomical images obtained with the two adaptive optics instruments in use at Paranal: the NAOS-CONICA imager and the SINFONI spectrograph.

In the early hours of 9 February, the LGS could be used together with the SINFONI instrument, while in the early morning of 10 February, it was with the NAOS-CONICA system.

"To have succeeded in such a short time is an outstanding feat and is a tribute to all those who have together worked so hard over the last few years," said Richard Davies, project manager for the laser source development at the Max Planck Institute for Extraterrestrial Physics.

A second phase of commissioning will take place in the spring with the aim of optimizing the operations and refining the performances before the instrument is made available to the astronomers, later this year. The experience gained with this Laser Guide Star is also a key milestone in the design of the next generation of Extremely Large Telescope in the 30 to 60 metre range that is now being studied by ESO and its community of users.

Explore further: Astrochemists reveal the magnetic secrets of methanol

Related Stories

Astrochemists reveal the magnetic secrets of methanol

January 30, 2018

A team of scientists, led by Boy Lankhaar at Chalmers University of Technology, has solved an important puzzle in astrochemistry—how to measure magnetic fields in space using methanol, the simplest form of alcohol. Their ...

Star mergers: A new test of gravity, dark energy theories

December 18, 2017

When scientists recorded a rippling in space-time, followed within two seconds by an associated burst of light observed by dozens of telescopes around the globe, they had witnessed, for the first time, the explosive collision ...

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

Recommended for you

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

A statistical look at the probability of future major wars

February 22, 2018

Aaron Clauset, an assistant professor and computer scientist at the University of Colorado, has taken a calculating look at the likelihood of a major war breaking out in the near future. In an article published on the open ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.