Space saving approach to satellite communications

December 5, 2005
CNT emitter ray

Ken Teo and his team at the University of Cambridge have come up with a much more efficient and compact way to send signals from satellites. They have managed to use an array of carbon nanotubes to create a device that replaces conventional heavy, bulky, high temprature, microwave amplifiers. The new electron source promises to revolutionise telecommunications and satellite communications in space.

Image: CNT emitter ray

Long range communications are a vital part of our lives for business, entertainment or just keeping in contact with friends and family. Much of this, especially to remote areas, is made possible through communications using satellite-based transmitters. There are typically 50 microwave amplifiers on board a satellite, each weighing about 1kg and measuring about 30cm in length.

Currently it costs about 10,000 pounds sterling to send a single kilogram of payload (data) into space. There is an advantage, both in terms of cost savings and extra payload which can be carried, if the weight and size of the microwave devices are reduced.

The microwave amplification devices used in space today are based on what's known as hot cathode technology. Ken and his team have demonstrated that a cold cathode source, based on carbon nanotube technology, can deliver electrons directly at microwave, that is gigahertz, frequencies and hence can be utilized in these microwave devices without delay, with potential weight and size savings of up to 50%. This will not only reduce the cost and increase the capability of conventional satellite systems, but will also enable the drive towards very low cost micro-satellites which weigh about 10kg.

High frequency CNT cathode

Right: High frequency CNT cathode

Carbon nanotubes are graphite sheets of carbon which are rolled up to form tubes. These tubes have diameters which are in the nanometer range and lengths from the micron to millimeter range. Carbon nanotubes are extremely conductive and have great mechanical strength. Ken and his team use carbon nanotubes as very sharp, highly conductive needles. The nanotubes are laid out into an array, with every nanotube having roughly the same height and diameter. They look like a bed of needles, but at the nanoscale. When these carbon nanotube needles are subjected to an electric field, such as that from an electromagnetic wave, they release electrons from their tips. By injecting radio frequency waves at the nanotubes, they are able to cycle them on and off at the frequency of the injected wave and thus create an electron beam at high frequency. They have done this at 1.5GHz and recently at 32GHz as well. Frequencies of 30Ghz and above, where there are plentiful channels, are where the communication links of the future will reside.

The new cold cathode source is very different from conventional hot cathode amplifiers. These have 4 parts: the direct current hot cathode electron source at 1000 degrees centigrade which generates a constant stream of electrons; an input stage to impose the signal onto the electrons; an output stage to retrieve the amplified signal from the electrons; and finally a collector stage to catch any wasted electrons. They are bulky, heavy, inefficient and slow to heat up.

In summary the advantages of this new carbon nanotube source are as follows. No heating is required and the source can be turned on and off instantaneously. The source and input stages of the microwave amplifier are also combined, producing a size and weight reduction. Finally, the whole concept of operation is different. With the conventional hot cathode source, we have a stream of electrons in which the electrons are modulated by speed to create bunches, and it is these bunches which are extracted as useful output. With the new cold cathode carbon nanotube source, the electrons bunches are instantaneously created at the source.

For more information please go to www-g.eng.cam.ac.uk/cnt

Source: University of Cambridge

Explore further: Researchers transform tomatoes into fluorescent carbon dots

Related Stories

Researchers transform tomatoes into fluorescent carbon dots

November 28, 2017

(Phys.org)—Researchers have shown that tomato pulp dissolved in water can eventually be turned into a powder of nanoparticles containing carbon dots with diameters of less than 5 nm. Like all carbon dots, one of the main ...

Best of Last Year—The top Phys.org articles of 2017

December 19, 2017

It was another great year for science, particularly physics, as evidenced by a study conducted by U.K., Canadian and Italian researchers who revealed substantial evidence of a holographic universe. They published what is ...

Liquids take a shine to terahertz radiation

October 30, 2017

In a significant breakthrough, scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai, have devised a high-power radiation source in the terahertz (THz) region of the electromagnetic spectrum. This study, ...

Energy-efficient green route to magnesium production

May 18, 2017

A research group led by Professor Yuji Wada and Adjunct Professor Satoshi Fujii of the Tokyo Institute of Technology has devised a magnesium smelting method that uses nearly 70 percent less energy than conventional methods ...

Scientists explore mash-up of vacuum tube and MOSFET

June 25, 2014

Thumb-size vacuum tubes that amplified signals in radio and television sets in the first half of the 20th century might seem nothing like the metal-oxide semiconductor field-effect transistors (MOSFETs) that dazzle us with ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.