Scientists' 'recipe' to help build a quantum computer

December 12, 2005

Scientists have come up with a "recipe" to help build the world’s first quantum computer – a new generation of super-fast machines set to revolutionise scientific discovery.

Quantum technology could be used to crack codes – valuable for national security – and is already used in some bank transactions. Future developments could involve understanding chemical reactions creating medicines, ultra-fast communications systems and seemingly impossible simulations, such as the creation of our universe.

A quantum computer would use the seemingly magical properties of tiny particles such as atoms to hold, process and transport the vast amounts of information – and all in the fraction of the time it would take a conventional computer.

The atoms would first need to be isolated from the billions around us, then converted into ions (charged atoms) and manipulated to perform tasks by use of electric fields. This is done using an ion trap. Scientists have so far trapped single atoms, but the real challenge lies in being able to orchestrate the millions of atoms needed to build a quantum computer.

Dr Winfried Hensinger, Lecturer in Atomic Molecular and Optical Physics at the University of Sussex, was part of a team in the USA that has developed a new way of mass-manufacturing ion traps using microchip technology.

This technique means that the traps, which need to be the size of a human hair to make a quantum computer of feasible scale, can be made quickly and sophisticated enough to allow useful computations. Details of the research, led by Professor Chris Monroe at the University of Michigan, are published in the science journal Nature Physics.

The process – photolithography – produces a 3-D “nano sculpture”, chemically etched out of gallium arsenide (a semi-conductor material similar to the silicon used in microchips).

Dr Hensinger says: ”Making a nano sculpture to trap single atoms and control their motion is very difficult. What we have done is to refine the recipe used in microchip manufacture to make traps for single atoms. Now we could make any kind of trap we need, in the quantity needed. This takes us a step nearer to building the first quantum computer.”

Quantum computers are important, says Dr Hensinger, because they will help to unlock some of science’s biggest secrets, not only by processing information faster, but giving far more accurate results. He says: “A quantum computer would allow us to solve some very big physics problems, where before the scale of the computer needed, and the time it would take to process data, would make the experiment unfeasible. It will have a huge impact on areas such as chemistry and in understanding nature as we know it. It will revolutionise all of science.”

Dr Hensinger now intends to continue his research into the development of a quantum computer at Sussex, where he has set up the Ion Quantum Technology Group. He says: “This is an exciting time for quantum physics, and for physics at Sussex, where I hope to work with colleagues in developing this work further.”

Publication: Ion trap in a Semiconductor Chip, D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab and C. Monroe, Nature Physics advance online publication, 11 December 2005 (doi:10.1038/nphys171).

Source: University of Sussex

Explore further: Simple is beautiful in quantum computing

Related Stories

Simple is beautiful in quantum computing

November 15, 2017

Quantum computing could solve problems impossible for today's supercomputers. The challenge for this new form of computing is processing the quantum bits (qubits) that represent data. A qubit can be made by controlling the ...

Physicists mix waves on superconducting qubits

November 14, 2017

Physicists from the Moscow Institute of Physics and Technology (MIPT) and Royal Holloway, University of London, have demonstrated an effect known as quantum wave mixing on an artificial atom. Their results, published in the ...

Volatility surprises arise in removing excess hydrogen

November 15, 2017

Excess hydrogen can cause problems in a variety of industries. It can corrode semiconductors, electronics, and nuclear fuel sitting in storage. It also poses an explosion hazard. To remove this extra hydrogen, chemists can ...

Recommended for you

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

The strange case of the scuba-diving fly

November 20, 2017

More than a century ago, American writer Mark Twain observed a curious phenomenon at Mono Lake, just to the east of Yosemite National Park: enormous numbers of small flies would crawl underwater to forage and lay eggs, but ...

Recurring martian streaks: flowing sand, not water?

November 20, 2017

Dark features on Mars previously considered evidence for subsurface flowing of water are interpreted by new research as granular flows, where grains of sand and dust slip downhill to make dark streaks, rather than the ground ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.