Physicists measure 'long' distances with picometer accuracy

December 2, 2005
This NIST vacuum chamber is used to measure millimeter distances more accurately than ever before

A new laser-based method for measuring millimeter distances more accurately than ever before--with an uncertainty of 10 picometers (trillionths of a meter)--has been developed and demonstrated by a physicist at the National Institute of Standards and Technology. This is akin to measuring the distance from New York to Los Angeles with an uncertainty of just 1 millimeter. The technique may have applications in nanotechnology, remote sensing and industries such as semiconductor fabrication.

Image: This NIST vacuum chamber is used to measure millimeter distances more accurately than ever before. Laser light is sent into the chamber through an optical fiber and stored between two highly reflective mirrors (left and bottom arrows), which form an optical cavity. By measuring the frequency of the light, which is tuned to match specific properties of the cavity, a scientist can determine changes in the lower mirror's position with picometer accuracy. Image credit: J. Lawall/NIST

Laser light is typically used to measure distances by counting the number of wavelengths (the distance between successive peaks of the wave pattern) of light between two points. Because the wavelength is very short (633 nanometers for the red light most often used), the method is intrinsically very precise.

Modern problems in nanotechnology and device fabrication, however, require uncertainty far below 633 nm.

A more precise method, described in the December issue of the Journal of the Optical Society of America A, involves measuring the frequency of laser light rather than the wavelength. The laser light is stored between two highly reflective mirrors, to create the optical analog of an organ pipe. The length of an organ pipe can be measured by driving the pipe with sound waves of a known frequency (pitch). The sound emitted by the pipe is loudest when it is driven at one of its "natural" frequencies, commonly called harmonics. When one or more of these frequencies is identified, the pipe length can be determined. In the NIST work, light is transmitted through both mirrors only when the frequency of the light matches a harmonic frequency. This frequency can be used to determine the distance between the mirrors.

While this approach has been used previously for the measurement of short distances (of the order of 1 micrometer), the new work extends it 25,000-fold by demonstrating a range of 25 millimeters. (Ultimately, the design should accommodate a range of up to 50 mm.) In addition, the NIST approach described in the paper excites two harmonics of the optical system, rather than one, a redundancy that increases the range while achieving picometer accuracy.

Publication: J.R. Lawall. 2005. Fabry-Perot metrology for displacements up to 50 mm. Journal of the Optical Society of America A. December 2005.

Source: NIST

Explore further: 'Frequency combs' ID chemicals within the mid-infrared spectral region

Related Stories

Metamaterials bend waves of all kinds

March 12, 2018

As the exciting new field of metamaterials advances, Duke has become one of the world's leading centers of this research. Founded in 2009, Duke's Center for Metamaterials and Integrated Plasmonics (CMIP) has grown to encompass ...

Optical distance measurement at record-high speed

February 26, 2018

Microresonator-based optical frequency combs enable highly-precise optical distance ranging at a rate of 100 million measurements per second – publication in Science: Scientists of Karlsruhe Institute of Technology (KIT) ...

Bringing a hidden superconducting state to light

February 16, 2018

A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). When cooled to a certain temperature and with certain concentrations of barium, ...

Recommended for you

The Swiss army knife of smoke screens

March 18, 2018

Setting off smoke bombs is more than good fun on the Fourth of July. The military uses smoke grenades in dangerous situations to provide cover for people and tanks on the move. But the smoke arms race is on. Increasingly, ...

World's biggest battery in Australia to trump Musk's

March 16, 2018

British billionaire businessman Sanjeev Gupta will built the world's biggest battery in South Australia, officials said Friday, overtaking US star entrepreneur Elon Musk's project in the same state last year.

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.