Intel: New Material to Help Chips Run Cooler, Use Less Energy

December 7, 2005

Intel Corporation today announced development of a new, ultra-fast, yet very low power prototype transistor using new materials that could form the basis of its microprocessors and other logic products beginning in the second half of the next decade.

Intel and QinetiQ researchers have jointly demonstrated an enhancement-mode transistor using indium antimonide (InSb) to conduct electrical current. Transistors control the flow of information/electrical current inside a chip. The prototype transistor is much faster and consumes less power than previously announced transistors. Intel anticipates using this new material to complement silicon, further extending Moore’s Law.

Significant power reduction at the transistor level, accompanied by a substantial performance increase, could play a crucial role in delivering future platforms to computer users by allowing an increased number of features and capabilities. Considerably less energy used and heat generated could add significant battery life for mobile devices and increase opportunities for building smaller more powerful products.

“The results of this research reinforce our confidence in being able to continue to follow Moore’s Law beyond 2015. As was the case with other Intel technical advancements, we expect these new materials will enhance the future of silicon-based semiconductors,” said Ken David, director of components research for Intel's Technology and Manufacturing Group “By providing 50 percent more performance while reducing power consumption by roughly 10 times, this new material will give us considerable flexibility because we will have ability to optimize for both performance and power of future platforms.”

InSb is in a class of materials called III-V compound semiconductors which are in use today for a variety of discrete and small scale integrated devices such as radio-frequency amplifiers, microwave devices and semiconductor lasers.

Researchers from Intel and QinetiQ have previously announced transistors with InSb channels. The prototype transistors being announced today, with a gate length of 85nm, are the smallest ever, at less than half the size of those disclosed earlier. This is the first time that enhancement mode transistors have been demonstrated. Enhancement mode transistors are the predominant type of transistor used in microprocessors and other logic. These transistors are able to operate at a reduced voltage, about 0.5 volts – roughly half of that for transistors in today’s chips – which leads to chips with far less power consumption.

“This research is a great example of how QinetiQ, working with other world-leading companies such as Intel, is targeting its research in technologies with commercial potential,” said Tim Phillips, business manager of the Fast Transistors group at QinetiQ.

Details will be provided at the IEDM conference Dec. 5-7, in Washington, D.C., where the formal paper describing this advancement will be delivered. The paper is titled, “85nm Gate Length Enhancement and Depletion mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications.”

Source: Intel

Explore further: Processing power beyond Moore's Law

Related Stories

Processing power beyond Moore's Law

April 20, 2018

In 1965, businessman and computer scientist Gordon Moore observed that the number of transistors in a dense integrated circuit doubles approximately every two years, which means a doubling of computer processing power. The ...

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...

The hybrid trap

March 29, 2018

You know you're sailing into the wind when your theory suggests that the Toyota Prius may end up being a business mistake. But innovation expert Fernando Suarez isn't the type to take the easy downwind course.

Photonic communication comes to computer chips

April 6, 2018

With novel optoelectronic chips and a new partnership with a top silicon-chip manufacturer, MIT spinout Ayar Labs aims to increase speed and reduce energy consumption in computing, starting with data centers.

One string to rule them all

April 13, 2018

Strain can be used to engineer unusual properties at the nanoscale. Researchers in Tobias Kippenberg's lab at EPFL have harnessed this effect to engineer an extremely low-loss nanostring. When plucked, the string vibrates ...

Recommended for you

China auto show highlights industry's electric ambitions

April 22, 2018

The biggest global auto show of the year showcases China's ambitions to become a leader in electric cars and the industry's multibillion-dollar scramble to roll out models that appeal to price-conscious but demanding Chinese ...

Robot designed for faster, safer uranium plant pipe cleanup

April 21, 2018

Ohio crews cleaning up a massive former Cold War-era uranium enrichment plant in Ohio plan this summer to deploy a high-tech helper: an autonomous, radiation-measuring robot that will roll through miles of large overhead ...

Gauging the effects of water scarcity on an irrigated planet

April 20, 2018

Growing global food demand, climate change, and climate policies favoring bioenergy production are expected to increase pressures on water resources around the world. Many analysts predict that water shortages will constrain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.