Hot, massive haloes found around most spiral galaxies

December 14, 2005
Hot, massive haloes found around most spiral galaxies

Astronomers using ESA's XMM-Newton observatory have found very hot gaseous haloes around a multitude of spiral galaxies similar to our Milky Way galaxy. These 'ghost-like' veils have been suspected for decades but remained elusive until now.

Above: This three-colour XMM-Newton image of NGC 4631 was created from merged EPIC pn and MOS images. Red, green and blue represent emission in the (0.2-1.0) keV, (1.0-2.0) keV, and (2.0-4.5) keV energy bands, respectively. The ellipse indicates the outer border of the H-alpha emitting disc. An extended soft X-ray halo is clearly visible which is most likely triggered by star formation related processes in the disc plane. Credits: ESA/AIRUB (R. Tüllmann)

Galaxy 'haloes' are often seen in so-called 'starburst' galaxies, the locations of concentrated star formation, but the discovery of high-temperature haloes around non-starburst spiral galaxies opens the door to new types of measurements once only dreamed about.

For example, scientists can confirm models of galaxy evolution and infer the star-formation rate in galaxies like our own by 'calculating backwards' to estimate how many supernovae are needed to make the observed haloes.

"Most of these ghost-like haloes have never been confirmed before in X-ray energies because they are so tenuous and have a low-surface brightness," said Ralph Tüllmann, from the Ruhr University in Bochum, Germany, lead author of the results.

"We needed the high sensitivity and large light-collecting area of the XMM-Newton satellite to uncover these haloes."

In starburst galaxies, which have prominent haloes, star formation and star death (supernovae) are concentrated in the core of the galaxy and occur during a short time period over the life of a galaxy. This intense activity forms a halo of gas around the entire galaxy, similar to a volcano sending out a plume.

So how can haloes form in the absence of intense star formation? Tüllmann's group say that the entire disk of a spiral galaxy can 'simmer' with star-formation activity. This is spread out over time and distance. Like a giant pot of boiling water, the steady activity of star formation over millions and millions of years percolates outward to form the galaxy halo.

Two of the best-studied galaxies so far out of a group of 32 are NGC 891 and NGC 4634, which are tens of millions of light years away in the constellations Andromeda and Coma Berenices, respectively.

The scientists noted that these observations do not support a recent model of galaxy halo formation, in which gas from the intergalactic medium rains down on the galaxy and forms the halo.


Galaxy halos contain about 10 million solar masses of gas. The scientists say it is a relatively straightforward calculation to determine how many supernovae are needed to create the halo. Supernovae are intricately tied to the rate of star formation in a given galaxy.

"With our data we will be able to establish for the first time a critical rate of star formation that needs to be exceeded in order to create such haloes," said Dr Ralf-Jürgen Dettmar, a co-author also from Ruhr University.

Once these haloes have formed, the hot gas cools and can fall down onto the galaxy's disk, the scientists said. The gas is involved in a new cycle of star formation, because pressure from this infalling gas triggers the collapse of gas clouds into new stars.

Some heavy elements might escape the halo into intergalactic space, depending on the energy of the supernovae. Further analysis of the chemical composition of the halo might reveal this.

This would determine the correctness of recent cosmological models on the evolution of galaxies, as well as provide evidence of how the elements necessary for life are distributed through the Universe.

A team led by Dr Ralph Tüllmann of the Ruhr University in Bochum, Germany, discusses these results in two articles in the scientific journal Astronomy & Astrophysics.

Source: ESA

Explore further: Extraplanar diffuse ionized gas detected in a nearby galaxy

Related Stories

Extraplanar diffuse ionized gas detected in a nearby galaxy

July 31, 2017

A research group led by Erin Boettcher of the University of Wisconsin-Madison has detected and characterized an extraplanar diffuse ionized gas in the nearby galaxy Messier 83. The study, published July 25 on arXiv.org, provides ...

Mapping dark matter

July 24, 2017

About eighty-five percent of the matter in the universe is in the form of dark matter, whose nature remains a mystery. The rest of the matter in the universe is of the kind found in atoms. Astronomers studying the evolution ...

Galaxy NGC 1132 has a disturbed hot halo, study finds

June 27, 2017

(Phys.org)—A new study recently published on arXiv.org reveals that the fossil group galaxy NGC 1132 (also known as UGC 2359) has a disturbed and asymmetrical hot halo. The findings provide new insights into the formation ...

The largest virtual universe ever simulated

June 9, 2017

Researchers from the University of Zurich have simulated the formation of our entire universe with a large supercomputer. A gigantic catalogue of about 25 billion virtual galaxies has been generated from 2 trillion digital ...

Recommended for you

New bioimaging technique is fast and economical

August 18, 2017

A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications ...

Evidence found of white dwarf remnant after supernova

August 18, 2017

An international team of space scientists has found evidence of what they believe is a remnant of a type Iax supernova—a white dwarf moving in a way that suggests it was blown across part of the universe by the power of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.