'The Matrix' is a step closer to reality; Neuroscientists break code on sight

November 4, 2005
Neuroscientists break code on sight

In the sci-fi movie "The Matrix," a cable running from a computer into Neo's brain writes in visual perceptions, and Neo's brain can manipulate the computer-created world. In reality, scientists cannot interact directly with the brain because they do not understand enough about how it codes and decodes information.

Image: Neurons in a purely visual brain region called the inferotemporal (IT) cortex respond selectively to different images. As pictures were randomly presented to the monkey during specific intervals (top), neurons at different sites in IT produce distinct patterns of activity to each picture (bottom). For example, neurons at site 1 favor the toy and the yam, while neurons at site 3 prefer the monkey face and the cat. Image courtesy / Poggio/DiCarlo labs

Now, neuroscientists in the McGovern Institute at MIT have been able to decipher a part of the code involved in recognizing visual objects. Practically speaking, computer algorithms used in artificial vision systems might benefit from mimicking these newly uncovered codes.

The study, a collaboration between James DiCarlo's and Tomaso Poggio's labs, appears in the Nov. 4 issue of Science.

"We want to know how the brain works to create intelligence," said Poggio, the Eugene McDermott Professor in Brain Sciences and Human Behavior. "Our ability to recognize objects in the visual world is among the most complex problems the brain must solve. Computationally, it is much harder than reasoning." Yet we take it for granted because it appears to happen automatically and almost unconsciously.

"This work enhances our understanding of how the brain encodes visual information in a useful format for brain regions involved in action, planning and memory," said DiCarlo, an assistant professor of neuroscience.

In a fraction of a second, visual input about an object runs from the retina through increasingly higher levels of the visual stream, continuously reformatting the information until it reaches the highest purely visual level, the inferotemporal (IT) cortex. The IT cortex identifies and categorizes the object and sends that information to other brain regions.

To explore how the IT cortex formats that output, the researchers trained monkeys to recognize different objects grouped into categories, such as faces, toys and vehicles. The images appeared in different sizes and positions in the visual field. Recording the activity of hundreds of IT neurons produced a large database of IT neural patterns generated in response to each object under many different conditions.

Then, the researchers used a computer algorithm, called a classifier, to decipher the code. The classifier was used to associate each object -- say, a monkey's face -- with a particular pattern of neural signals, effectively decoding neural activity. Remarkably, the classifier found that just a split second's worth of the neural signal contained specific enough information to identity and categorize the object, even at positions and sizes the classifier had not previously "seen."

It was quite surprising that so few IT neurons (several hundred out of millions) for such a short period of time contained so much precise information. "If we could record a larger population of neurons simultaneously, we might find even more robust codes hidden in the neural patterns and extract even fuller information," Poggio said.

Source: MIT

Explore further: Rabies viruses reveal wiring in transparent brains

Related Stories

Rabies viruses reveal wiring in transparent brains

January 19, 2017

Scientists under the leadership of the University of Bonn have harnessed rabies viruses for assessing the connectivity of nerve cell transplants: coupled with a green fluorescent protein, the viruses show where replacement ...

The science of baby's first sight

January 9, 2017

When a newborn opens her eyes, she does not see well at all. You, the parent, are a blurry shape of light and dark. Soon, though, her vision comes online. Your baby will recognize you, and you can see it in her eyes. Then ...

Scientists discover new mechanism of how brain networks form

December 26, 2016

Scientists have discovered that networks of inhibitory brain cells or neurons develop through a mechanism opposite to the one followed by excitatory networks. Excitatory neurons sculpt and refine maps of the external world ...

Sensory stimuli control dopamine in the brain

January 13, 2017

Regardless of whether we are sitting in a loud aeroplane or walking through a quiet forest clearing, how humans perceive their environment depends on the stimuli. This, in turn, affects our behaviour – sometimes consciously, ...

Recommended for you

Study finds parrotfish are critical to coral reef health

January 23, 2017

An analysis of fossilized parrotfish teeth and sea urchin spines by researchers at Scripps Institution of Oceanography at the University of California San Diego showed that when there are more algae-eating fish on a reef, ...

Melting solid below the freezing point

January 23, 2017

Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science have discovered a new phenomenon of so-called metastability ...

'Droneboarding' takes off in Latvia

January 22, 2017

Skirted on all sides by snow-clad pine forests, Latvia's remote Lake Ninieris would be the perfect picture of winter tranquility—were it not for the huge drone buzzing like a swarm of angry bees as it zooms above the solid ...

Singapore 2G switchoff highlights digital divide

January 22, 2017

When Singapore pulls the plug on its 2G mobile phone network this year, thousands of people could be stuck without a signal—digital have-nots left behind by the relentless march of technology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.