Scientists Confirm Toxic Seas During Earth's Evolution

October 7, 2005

NASA exobiology researchers confirmed Earth's oceans were once rich in sulfides that would prevent advanced life forms, such as fish and mammals, from thriving.

A team of scientists from the Massachusetts Institute of Technology and Harvard University, working with colleagues from Australia and the United Kingdom, analyzed the fossilized remains of photosynthetic pigments preserved in 1.6 billion-year-old rocks from the McArthur Basin in Northern Australia.

They found evidence of photosynthetic bacteria that require sulfides and sunlight to live. Known as purple and green sulfur bacteria because of their respective pigment colorations, these single-celled microbes can only live in environments where they simultaneously have access to sulfides and sunlight.

The researchers also found very low amounts of the fossilized remains of algae and oxygen-producing cyanobacteria. The relative scarcity of these organisms is due to poisoning by large amounts of sulfide.

"This work suggests Earth's oceans may have been hostile to animal and plant life until relatively recently," said Dr. Carl Pilcher, NASA's senior scientist for astrobiology. "If so, this would have profound implications for the evolution of modern life."

"The discovery of the fossilized pigments of purple sulfur bacteria is totally new and unexpected. Because they need fairly high intensity sunlight, it means the pink bacteria, along with their essential source of sulfide, close to the surface, perhaps as close as 20 to 40 meters," said Roger Summons, Massachusetts Institute of Technology professor of geobiology. "The sulfide would have come from bacteria that reduces sulfate carried into the oceans by the weathering of rocks."

"The McArthur Basin rocks were deposited over a very large area and over many millions of years, so it's likely they formed under water that was intermittently connected to or actually part of an ocean. In turn, this implies the ocean had an abundant and continuous supply of hydrogen sulfide and must have been quite toxic to any oxygen-breathing organisms," said team member Jochen Brocks. "In fact, for seven-eighths of Earth's 4.5 billion-year history, there was probably little oxygen in the oceans and certainly not enough to support oxygen-breathing marine animals."

This research continued the efforts of NASA and partner institutions to understand the early history of the Earth. Research results were published in the Oct. 6, 2005, edition of Nature magazine.

The research was conducted by a team working in Summons' laboratory. Team members include Jochen Brocks, formerly of Harvard and now at Australian National University; Gordon Love, Massachusetts Institute of Technology; Stephen Bowden, University of Aberdeen, Scotland; Graham Logan, Geoscience Australia; and Andrew Knoll, Harvard.

Source: NASA

Explore further: The strange case of the scuba-diving fly

Related Stories

The strange case of the scuba-diving fly

November 20, 2017

More than a century ago, American writer Mark Twain observed a curious phenomenon at Mono Lake, just to the east of Yosemite National Park: enormous numbers of small flies would crawl underwater to forage and lay eggs, but ...

Antibiotic discovery in the abyss

November 15, 2017

Combining the innovations of synthetic biology with robotic environmental sampling, a team of University of Bristol researchers are travelling to some of the most 'extreme' environments on Earth, including Atlantic depths ...

Heavy nitrogen molecules reveal planetary-scale tug-of-war

November 17, 2017

Nature whispers its stories in a faint molecular language, and Rice University scientist Laurence Yeung and colleagues can finally tell one of those stories this week, thanks to a one-of-a-kind instrument that allowed them ...

Recommended for you

Male dolphins offer gifts to attract females

November 21, 2017

Researchers from The University of Western Australia have captured a rare sexual display: evidence of male humpback dolphins presenting females with large marine sponges in an apparent effort to mate.

The microscopic origin of efficiency droop in LEDs

November 21, 2017

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.