Molecules of light pulses

October 12, 2005

Corrected [contrubuted by Prof. Dr. Fedor Mitschke]: Researchers at the University of Rostock in Germany have made the world's first molecules of light pulses, which might allow a significant increase in the data transfer rate of fiber optical systems. The molecules are built of temporal solitons, pulses of light that do not dissipate or easily lose their shape like most other types of pulses. Solitons are useful for transmitting information because the signals can travel over long distances without degrading.

Solitons are waves that can have characteristics similar to material particles, like electrons and billiard balls. Although molecules made from spatial solitons have been demonstrated before, the researchers claim that this is the first time anyone has made temporal solitons stick together to form structures analogous to molecules.

Fiber optical systems transmit information by sending light signals through a fiber as a combination of zeros (dark) and ones (light). The data transfer rate for binary coding is fast approaching its fundamental limits, but it may be possible to bypass the limit by transmitting information as zeros, ones, and twos with soliton molecules representing the number two.

The Rostock scientists propose that using soliton molecules as the "two" in information coding could take telecommunications technology to the next level without expensive infrastructure upgrades. They also believe that it may eventually be possible to represent higher numbers with molecules comprised of more complex groups of solitons.

M. Stratmann, T. Pagel, and F. Mitschke
Physical Review Letters
link.aps.org/abstract/PRL/v95/e143902

Source: American Physical Society

Explore further: Soliton molecules caused to vibrate like real molecules

Related Stories

Soliton molecules caused to vibrate like real molecules

June 20, 2017

(Phys.org)—A team of researchers with the University of Burgundy in France has shown that solitons can vibrate like real molecules when paired. They have published a paper describing their technique and findings in the ...

Finding the right soliton for future networks

May 14, 2008

European researchers say their study of self-sustaining solitary light wave packets could result in a new generation of computers and optical telecommunications networks. Using light rather than electronic or magnetic devices ...

Broadband light sources with liquid core

July 31, 2017

Research scientists from Jena have produced broadband laser light in the mid-infrared range with the help of liquid-filled optical fibers. The experiment produced proof of a new dynamics of hybrid solitons—temporally and ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Heavy oils and petroleum coke raising vanadium emissions

December 15, 2017

Human emissions of the potentially harmful trace metal vanadium into Earth's atmosphere have spiked sharply since the start of the 21st century due in large part to industry's growing use of heavy oils, tar sands, bitumen ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.