Where the brain combines what's heard and felt

October 19, 2005

Using functional magnetic resonance imaging, researchers at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany have showed that the integration of auditory and touch information takes place in the 'hearing centre' of the brain – the auditory cortex – and thus at an earlier point than has traditionally been assumed.

Everyday, the brain accesses information from various sense organs simultaneously to create a "picture" of its environment. This important mixture of information from various sense organs is known as "multisensory integration".

Many activities would be difficult to carry out if the brain did not receive information from a number of different sources at the same time. Furthermore, by manipulating multisensory integration, one can create illusions of perception. One well-known example is the 'ventriloquist effect'. If one hears a voice (for example, from a loudspeaker), and then simultaneously sees a face or a mouth moving to speak, then the voice appears to come from the mouth – even when, in the case of ventrioloquist, the mouth belongs to a dummy. Similar effects are known to occur with the other senses: if someone rubs their hands together, they produce a noise that one can use to determine if their hands are dry or raw. If the sound, however, is cleverly manipulated, then subjects make completely different guesses about the condition of their skin.

The auditory cortext in action. The picture was created using functional magnetic resonance imaging. The colored points indicate regions which react with strong activation to particular impulses. A: tactile stimulation of the hand. B: auditory stimulation. C: simultaneous tactile and auditory stimulation. In C there is more activity than in B, which suggests that the processing of the auditory stimulus is influenced by the tactile stimulation.

One important question in neuro-research is where multisensory integration takes place. Traditionally, it has been assumed that it doesn't take place in the sensory areas, where the information from sense organs comes in, but rather in a downstream, 'higher' area of the brain known as the 'association cortex'. The information from sense organs – in other words, what is taken in – was considered to be first processed in specific sensory areas; for example, the auditory information from the cochlea in the auditory cortex. Only then, it was assumed, it was integrated with similarly prepared information from visual and tactile impressions.

But new findings, including those of the Max Planck researchers, have showed that this description is not exactly correct. Multimodal integration does indeed take place at deeper levels. Using functional magnetic resonance imaging, the scientists from Tübingen measured the activity of brain cells in the auditory cortex of primates. The anatomical partitioning of the primary and secondary auditory cortexes is known in detail and the scientists can take advantage of the high spatial resolution offered by their approach. This is important because the areas under investigation are smaller than two or three millimeters.

The results clearly show that the activity in the auditory cortex by an auditory impulse is strengthened when it is combined with tactile stimulation of a hand. Furthermore, the researchers found areas inside the auditory cortex that react more strongly to simultaneous impulses than to single stimuli – this is a classic criterion for the identification of multimodal integration. The researchers also showed that this integration takes place in the secondary auditory cortex.

The scientists suspect that one reason that sensory information is combined so early in the brain is that this way false "pictures" can be more easily prevented. Such false pictures match a single sense impression, but are inconsistent across a number of sense impressions. The brain can thus rule them out. However, this speculation, among others, must still be subject to further research.

Source: Max-Planck-Gesellschaft

Explore further: How the human brain detects the 'music' of speech

Related Stories

How the human brain detects the 'music' of speech

August 24, 2017

Researchers at UC San Francisco have identified neurons in the human brain that respond to pitch changes in spoken language, which are essential to clearly conveying both meaning and emotion.

How neuroscience helps to advance machine learning

August 28, 2017

While building artificial systems does not necessarily require copying nature—after all, airplanes fly without flapping their wings like birds—the history of AI and machine learning convincingly demonstrates that drawing ...

Recommended for you

Gravitational waves may oscillate, just like neutrinos

September 21, 2017

(Phys.org)—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

September 21, 2017

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...

Neanderthal boy's skull grew like a human child's: study

September 21, 2017

The first analysis of a Neanderthal boy's skull uncovered in Spain suggests that he grew much like a modern boy would, in another sign that our extinct ancestors were similar to us, researchers said Thursday.

New technique accurately digitizes transparent objects

September 21, 2017

A new imaging technique makes it possible to precisely digitize clear objects and their surroundings, an achievement that has eluded current state-of-the-art 3D rendering methods. The ability to create detailed, 3D digital ...

Physicists publish new findings on electron emission

September 21, 2017

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.