Explain physics with the whole instead of particles

September 28, 2005

Physicists usually describe the world from the vantage point of its smallest component parts. But quantum theory does not allow itself to be conceptually crammed into such a framework. Instead, in her dissertation at Uppsala University in Sweden, Barbara Piechocinska takes her point of departure in the mathematics of the dynamic whole and finds that time thereby takes on new meaning.

Throughout the centuries reductionist philosophy has reigned supreme in physics. It has been assumed that it is possible in principle to describe the world by finding the tiniest building blocks and understanding how they interact. Not until the early 20th century was this view of the world seriously challenged, by quantum theory. Quantum theory is regarded as one of the most fundamental of theories, explaining, among other things, the stability of the atom, and it is widely used in technology.

“What’s interesting about quantum theory is that it seems to refuse to be shut up inside a reductionist framework. Instead it seems to indicate that there is an underlying indivisible, in other words holistic, dynamic whole. This means that we should use that as a point of departure and then describe the physical world,” says Barbara Piechocinska.

This is precisely what she has done. In her dissertation she proposes a philosophy that takes dynamics and wholeness as fundamental, instead of static parts that interact. Further, she suggests a mathematical description of this dynamics. Kinetic equations in classical Newtonian mechanics or in quantum theory make no distinction about whether time goes forward or backward. Dynamics, on the other hand, does, being based on wholeness. But Barbara Piechocinska can’t tell whether this is physically relevant or merely a mathematical construction.

“If this approach is elaborated further we will hopefully be able to answer that question. Because then we would see exactly what it predicts and could see whether the predictions square with reality. If it were to be shown that the extra bit is truly relevant in the physical world, then we would have good reason to reconsider our way of looking at the world and dethrone reductionism,” she says.

Explore further: Cosmologists a step closer to understanding quantum gravity

Related Stories

Cosmologists a step closer to understanding quantum gravity

January 23, 2017

Cosmologists trying to understand how to unite the two pillars of modern science – quantum physics and gravity – have found a new way to make robust predictions about the effect of quantum fluctuations on primordial density ...

Studying the quantum vacuum: Traffic jam in empty space

January 18, 2017

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by Professor Alfred Leitenstorfer has now shown how to manipulate the ...

First experimental proof of a 70 year old physics theory

January 3, 2017

PARK Je-Geun, Associate Director at the Center for Correlated Electron Systems and collaborators have demonstrated the magnetic behavior of a special class of 2-D materials. This is the first experimental proof to a theory ...

Recommended for you

Bursts of methane may have warmed early Mars

January 24, 2017

The presence of water on ancient Mars is a paradox. There's plenty of geographical evidence that rivers periodically flowed across the planet's surface. Yet in the time period when these waters are supposed to have run—three ...

Meteorites did not enrich ocean life: study

January 24, 2017

An explosion of ocean life some 471 million years ago was not sparked by a meteorite bombardment of Earth, said a study Tuesday that challenges a leading theory.

Biologists identify reproductive 'traffic cop'

January 24, 2017

Before an egg becomes fertilized, sets of chromosomes must pair up to pass along genetic information. This happens within each reproductive cell, where separate chromosomes of male and female origin move toward each other ...

Biologists unlock code regulating most human genes

January 24, 2017

Molecular biologists at UC San Diego have unlocked the code that initiates transcription and regulates the activity of more than half of all human genes, an achievement that should provide scientists with a better understanding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.