Black Hole Blows Bubble Between The Stars

August 11, 2005

A team of astronomers from The Netherlands and the UK has discovered a vast "jet-powered bubble" formed in the gas around a black hole in the Milky Way.

The discovery means that for decades scientists have been severely underestimating how much power black holes pump back into the universe instead of merely swallowing material across their event horizons.

Jets of energy and particles flowing outwards at close to the speed of light are a common feature of all accreting black holes, ranging from supermassive black holes at the centres of active galactic nuclei to stellar-mass black holes in X-ray binary systems within our own Galaxy.

However, for the first time European astronomers have now discovered a large bubble surrounding an X-ray binary system. The bubble is approximately 10 light years across, and is predicted to be expanding with a speed of around 100 km per second (225,000 mph).

It appears to have been formed by the action of a powerful outflow or "jet" of energy and matter from the black hole over a time scale of about a million years.

The new, detailed radio observations of a black hole called Cygnus X-1 show a ring of radio emission around a bubble in the nearby interstellar gas - the result of a strong shock that develops at the location where the jet strikes the rarefied gas of the interstellar medium.

The jet that created the bubble seems to be carrying more than 100,000 times the total luminosity of our Sun, and yet the only evidence for this incredible flow of energy is its impact on the tenuous gas between the stars, resulting in the expanding bubble.

"We already knew that supermassive black holes at the centre of other galaxies produce enormous amounts of energy, but this finding proves that something similar is happening in our backyard," said Elena Gallo of the University of Amsterdam, lead author of the paper which will appear in this week's issue of Nature.

"Remarkably, it also means that, after a massive star dies and turns into a black hole, it is still capable of energising its surroundings, by means of completely different mechanisms."

"The importance of this result is that it demonstrates that black holes such as Cygnus X-1, of which there may be millions within our galaxy alone, do not swallow all of the infalling matter and energy, but rather redirect a considerable fraction of it back into space," added Rob Fender of the University of Southampton, second author on the paper.

"We knew about jets from black holes and expected to discover some interaction of the jet's energy with the gas in our Milky Way, but the size and energy content of this bubble came as a surprise," added co-author Dr. Christian Kaiser, also of the University of Southampton.

The team has ruled out the possibility that the ring might be the low-luminosity remnant of the supernova that spawned the black hole. Since Cygnus X-1 moves in the sky along a trajectory that is roughly perpendicular to the jet, it cannot possibly have been located in the centre of the ring.

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: Smartphones come in handy for the rare cosmic particles search

Related Stories

Black hole breakthrough: New insight into mysterious jets

January 10, 2018

Through first-of-their-kind supercomputer simulations, researchers, including a Northwestern University professor, have gained new insight into one of the most mysterious phenomena in modern astronomy: the behavior of relativistic ...

Black hole spin cranks-up radio volume

January 12, 2018

Statistical analysis of supermassive black holes suggests that the spin of the black hole may play a role in the generation of powerful high-speed jets blasting radio waves and other radiation across the universe.

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.