Bacteria that bind toxic metals: Are they the future of nuclear waste cleanup?

August 26, 2005 feature
Bacteria that bind toxic metals: Are they the future of nuclear waste cleanup?

by Gina M. Buss

Researchers in Germany have found a way to use bacteria which are able to accumulate toxic metals and survive in nuclear waste as a way of cleaning up toxic dumps.

230,000 tons of nuclear waste: that’s how much toxic metal can accumulate after 30 years of mining uranium - and that’s just one waste pile. With all the nuclear waste production throughout the world, this toxic metal is literally “piling up” in more and more places, and is encroaching on inhabited areas.

During the process of generating nuclear power and nuclear weapons, radionuclides like uranium are discharged into the environment. These metals pose a serious ecological and health threat and usually contaminate the soil, sediment, and waters surrounding the waste piles.

Conventional methods of cleaning up these toxic wastes are often expensive and not very effective. The environment is in dire need of a novel approach to waste clean-up and researchers in Germany may have the answer.

A recent study from the Institutes of Radiochemistry and Nuclear Physics in Dresden outlines a way of using bioremediation as a means for eliminating nuclear waste. Bioremediation is a process that uses microorganisms to return an environment back to its original condition after it has been exposed to contaminants.

Nuclear waste piles, such as the one in southeast Germany that’s highlighted in the
study, are a reservoir for certain strains of bacteria. These bacteria have evolved special mechanisms to survive in this waste that would normally be toxic to other types of microorganisms.

The strain Bacillus sphaericus has evolved a crystalline surface layer (S-layer) that covers the outside of the cell. This layer is more than a protective barrier to the bacteria, it serves to accumulate high amounts of toxic metals such as uranium, lead, copper, aluminum, and cadmium.

Researchers are currently seeking out ways to exploit the bacteria’s strategies. New technology is incorporating the S-layer structure onto silicon wafers, metals, polymers, nanoclusters, and bioceramic discs. All of these products could be used to remove metals from contaminated water and soil.

Additionally, these technologies could be used to recover precious metals such as platinum and palladium from industrial waste sites and recycle them for making electronic products.

Bacteria may be the template for new technology aimed at nuclear waste removal. The time may be near when synthetic S-layer discs can be placed in contaminated areas and act as sponges, cleaning up a big toxic mess.

Reference:

Pollman K, Raff J, Merroun M, Fahmy K, and Selenska-Pobell S.
Biotechnology Advances. 2005. Article in press.

by Gina M. Buss, Copyright 2005 PhysOrg.com

Explore further: Multiple challenges remain to Fukushima nuclear cleanup

Related Stories

Multiple challenges remain to Fukushima nuclear cleanup

September 26, 2017

Japan's government approved a revised road map Tuesday to clean up the radioactive mess left at the Fukushima nuclear power plant after it was damaged beyond repair by an earthquake and tsunami in 2011. Decommissioning the ...

What are mitochondria and how did we come to have them?

September 22, 2017

We've probably all heard of mitochondria, and we may even remember learning in school that they are the "powerhouses of the cell" – but what does that actually mean, and how did they evolve? To answer this question, we ...

Understanding rare earth emulsions

October 13, 2017

Despite their name, rare earth elements actually aren't that rare. Abundant in mines around the world, rare earths are used in many high-tech products, including visual displays, batteries, super conductors, and computer ...

With fossil fuel bans, e-cars shift into higher gear

September 11, 2017

Beijing's announcement that it is considering joining France and Britain in banning petrol and diesel cars from its smog-clogged roads promises to accelerate a push towards electric vehicles—a race in which Chinese carmakers ...

Postpone the nuclear waste decision

April 2, 2012

Although nuclear waste has been produced for a long time, there is still no good way to discard the highly toxic material, which remains hazardous for up to 130 000 years. In his new book titled Nuclear Waste Management and ...

Recommended for you

A possible explanation for how germlines are rejuvenated

November 23, 2017

(Phys.org)—A pair of researchers affiliated with the University of California and Calico Life Sciences, has discovered a possible explanation regarding how human germlines are rejuvenated. In their paper published in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.