AMRC Developing Nano-Metrology to Probe Chip Structures at Atomic Level

August 17, 2005

Engineers at the Advanced Materials Research Center (AMRC) in Austin are investigating a nanoscale approach to metrology that will allow them to examine new semiconductor structures at the atomic level, and so prepare the way for next-generation electronics.

The new methodology uses computer modeling designed for use with aberration‑corrected transmission electron microscopy (TEM), an imaging method that can resolve as small as 0.7 Angstrom (Å). Many inter-atomic spacings in crystals, including silicon, have dimensions less than 0.1 nm (1 Å).

This capability of viewing atom-sized structures will push forward the feasibility of advanced semiconductor structures such as fin-shaped field-effect transistors (FinFETs,) which are hoped-for replacements for conventional CMOS transistors that are running up against fundamental physical limitations.

“Aberration correction has changed the resolution of electron microscopy and opened new windows on the atomic structure of nanotechnology,” said Alain Diebold, a SEMATECH Senior Fellow and internationally recognized metrology expert. “By adding modeling, we can simulate images much more accurately, and truly understand what we are seeing.”

The AMRC project is being led by Dr. Brian Korgel, University of Texas at Austin chemical engineering professor, in consultation with Diebold. Its aim is to employ unique software to simulate electron diffraction patterns of nanowires, whose diameters of less than 20 nm are similar to the dimensions of next-generation transistor gates and the fin-like structure of FinFETs. However, since nanowires are simpler structures, using them will allow researchers to refine their new microscopy techniques for more demanding metrology in the future.

“In the past, metrology has had trouble keeping up with the rapid advances in semiconductor scaling,” said Diebold. “Now we have a tool that gives us the potential to understand surface and interface morphology, and atomic structure, in ways that we have never been able to do before. It gives us a big leg up in understanding the structures of future devices.”

Explore further: Researchers open door to advanced molecular electronic metrology

Related Stories

A tool for measuring atomic properties at the quantum limit

September 12, 2014

Performing high-resolution, high-sensitivity measurements of light and matter at the quantum limit requires extraordinary tools. Due to the difficulties of manipulating atoms with the necessary control, such measurements ...

Scientists develop 3D SEM metrology for 10nm structures

March 24, 2014

(Phys.org) —PML researchers have devised an idea for determining the three-dimensional shape of features as small as 10 nanometers wide. The model-based method compares data from scanning electron microscope (SEM) images ...

Goal: developing the best atomic clock in the world

May 29, 2009

They are masters at working with light: the scientists at the newly founded QUEST Institute at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig. And they want to work on some of the most exciting questions relating ...

Bon MOT: Innovative atom trap catches highly magnetic atoms

April 2, 2008

A research team from the National Institute of Standards and Technology and the University of Maryland has succeeded in cooling atoms of a rare-earth element, erbium, to within two millionths of a degree of absolute zero ...

NIST Unveils Atom-based Standards

February 24, 2005

Gaithersburg, MD--Device features on computer chips as small as 40 nanometers (nm) wide—less than one-thousandth the width of a human hair—can now be measured reliably thanks to new test structures developed by a team ...

Recommended for you

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.