Researchers develop impurity-free process for powder injection molding of titanium components

March 8, 2005

New method could reduce fabrication costs and increase use of titanium and other metals

Researchers at the Department of Energy's Pacific Northwest National Laboratory have developed a new method for powder injection molding of titanium and similar materials to form components for advanced engineering applications.
Titanium offers high specific strength and excellent corrosion resistance, making it ideally suited to the automotive, aerospace, chemical production and biomedical equipment industries. However, use of injection molded titanium components has been severely limited by alloy impurities directly attributable to the current process.

The PNNL method overcomes these problems, allowing powder injection molding to be readily used in preparing components from alloys of titanium, tungsten, and niobium, as well as other reactive refractory materials. The key to the PNNL process is a proprietary binder that is cleanly removed during sintering and leaves no impurities that can cause degradation in material properties.

In addition, the porosity of components produced by the PNNL process can be tailored for a variety of specialized applications, including the design of self-lubricating parts and biomedical implants. This is accomplished by including easily removed fugitive phases in the powder mixture and by controlling the subsequent debinding and sintering heat treatments.

Derived from plastic injection molding, powder injection molding employs a mixture of metal powder and polymeric binder. It is a well established, cost-effective method of fabricating large volumes of small- to moderate-size, net shape components and can be used to produce parts of complex shape. Because fabrication temperatures are relatively low (~150 - 250°C), the molds employed in powder injection molding are less expensive than those used in other forming techniques, such as die casting or forging.

Source: Pacific Northwest National Laboratory

Explore further: A magnetic method for polishing metals enables mold templates with microscale features

Related Stories

First powder injection molding process for pure niobium

October 17, 2005

Penn State researchers have developed the first powder injection molding process for pure niobium, a biocompatible material similar to platinum and titanium but cheaper. The researchers, who are based in the University's ...

Savvy injection molding

April 2, 2010

( -- With the help of neural networks, in which complex algorithms are used to monitor critical process steps, engineers are paving the way for zero-defect production in the area of metal powder injection molding. ...

Ames Laboratory beefing up magnets for electric-drive cars

January 9, 2008

Ask Iver Anderson at the U.S. Department of Energy’s Ames Laboratory about consumer interest in and desire for “ultragreen” electric-drive vehicles, and he’ll reply without a moment’s hesitation that the trend is ...

Recommended for you

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Termite queen, king recognition pheromone identified

March 19, 2018

Researchers at North Carolina State University have for the first time identified a specific chemical used by the higher termite castes—the queens and the kings—to communicate their royal status with worker termites. ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Making intricate images with bacterial communities

March 19, 2018

Working with light and genetically engineered bacteria, researchers from Stanford University are able to shape the growth of bacterial communities. From polka dots to stripes to circuits, they can render intricate designs ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.