Tiny Holes Offer Giant Glimpse into Future

December 24, 2004

Miniscule holes in a single molecule detector being developed at the University of Arkansas may hold the key to enormous advancements in the medical and biological sciences.
Jiali Li, an assistant professor of physics, recently received a $500,000 grant from the National Institutes of Health to further her research into nanopores. Li, the first UA physicist to receive NIH funding, is fine-tuning a microscope-like device she and her former colleagues invented known as the single-molecule nanopore detector.

Nanopores are essentially holes as tiny as 30 atoms across that exist within all living systems. They act as sensitive membrane channels through which cells sustain life by breathing molecules in and out.

"Not many people study solid-state nanopores," explained Li, who began the project as part of postdoctoral research at Harvard University. "My lab at UA, Dr. [Jene] Golovchenko and Dr. [ Daniel ]Branton's lab at Harvard, and maybe one more lab in Europe [which is pursuing a different aspect of nanopores research].

"Before, we didn't have the tools to look at a single molecule in motion; scientists had to look at thousands of millions of them together to get important information. This is a new tool through which we can look at them one at a time."

With the nanopore "microscope," Li and her research group can look not only at a single molecule, but can measure the interaction between molecules. Down the road, Li and colleagues hope to be able to identify single molecules that are responsible for illnesses. Doctors, for example, could have inexpensive devices in their offices that could read genetic blueprints quickly and easily. Medications and lifestyle changes could then be prescribed to suit each individual, depending upon their individual DNA makeup.

"If this project is successful, it will have a very big impact in the medical sciences and the biological sciences, because we can study a lot of things we could not study before and can't even study now," Li said.

Source: University of Arkansas

Explore further: Signs of sleep seen in jellyfish

Related Stories

Signs of sleep seen in jellyfish

September 21, 2017

Jellyfish snooze just like the rest of us. Like humans, mice, fish and flies, the upside-down jellyfish Cassiopea exhibits the telltale signs of sleep, scientists report September 21, 2017 in the journal Current Biology. ...

Scientists edit butterfly wing spots and stripes

September 18, 2017

An international research team working at the Smithsonian Tropical Research Institute in Panama knocked-out a single control gene in the DNA of seven different butterfly species. In the Sept. 18 Proceedings of the National ...

Recommended for you

Gravitational waves may oscillate, just like neutrinos

September 21, 2017

(Phys.org)—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

September 21, 2017

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...

Neanderthal boy's skull grew like a human child's: study

September 21, 2017

The first analysis of a Neanderthal boy's skull uncovered in Spain suggests that he grew much like a modern boy would, in another sign that our extinct ancestors were similar to us, researchers said Thursday.

New technique accurately digitizes transparent objects

September 21, 2017

A new imaging technique makes it possible to precisely digitize clear objects and their surroundings, an achievement that has eluded current state-of-the-art 3D rendering methods. The ability to create detailed, 3D digital ...

Physicists publish new findings on electron emission

September 21, 2017

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.