1 Terabyte Optical Storage Disks the Size of a DVD

September 26, 2004

Physicists at Imperial College London are developing a new optical disk with so much storage capacity that every episode of The Simpsons made could fit on just one. Speaking at the Asia-Pacific Data Storage Conference 2004 in Taiwan today, Dr Peter Török, Lecturer in Photonics in the Department of Physics, will describe a new method for potentially encoding and storing up to one Terabyte (1,000 Gigabytes) of data, or 472 hours of film, on one optical disk the size of a CD or DVD.

Physicists at Imperial College London are developing a new optical disk with so much storage capacity that every episode of The Simpsons made could fit on just one.

Speaking at the Asia-Pacific Data Storage Conference 2004 in Taiwan today, Dr Peter Török, Lecturer in Photonics in the Department of Physics, will describe a new method for potentially encoding and storing up to one Terabyte (1,000 Gigabytes) of data, or 472 hours of film, on one optical disk the size of a CD or DVD.

All 350 scheduled episodes of The Simpsons, totalling 8,080 minutes of film, could be easily stored on the new disk, dubbed MODS - for Multiplexed Optical Data Storage - by the Imperial College team.

The 1TB disk would be double sided and dual layer, but even a single sided, single layer, MODS disk could hold the Lord of the Rings trilogy 13 times over, or all 238 episodes of Friends.

MODS disks will not be the first to challenge DVDs’ domination of the audiovisual optical disk market. BluRay disks, which have five times the capacity of a DVD at 25GB per layer, are expected to be released towards the end of 2005 for the home market.

The Imperial researchers, working closely with colleagues at the Institute of Microtechnology, University of Neuchâtel, Switzerland, and in the Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece, estimate that MODS disks would cost approximately the same to manufacture as an ordinary DVD and that any system playing them would be backwards compatible with existing optical formats – meaning that CDs and DVDs could be played on a MODS system. Dr Török believes that the first disks could be on the shelves between 2010 and 2015 if his team are able to secure funding for further development.

“According to our experimental results, we can optimistically estimate that we will be able to store about one Terabyte per disk in total using our new method,” said Dr Török, leader of the research. “This translates to about 250GB per layer, 10 times the amount that a BluRay disk can hold.”

The Imperial researchers and colleagues at Neuchâtel and Thessaloniki filed a patent covering their ideas in July 2004.

Under magnification the surface of CDs and DVDs appear as tiny grooves filled with pits and land regions. These pits and land regions represent information encoded into a digital format as a series of ones and noughts. When read back, CDs and DVDs carry one bit per pit, but the Imperial researchers have come up with a way to encode and retrieve up to ten times the amount of information from one pit.

Unlike existing optical disks, MODS disks have asymmetric pits, each containing a ‘step’ sunk within at one of 332 different angles, which encode the information. The Imperial researchers developed a method that can be used to make a precise measurement of the pit orientation that reflects the light back. A different physical phenomenon is used to achieve the additional gain.

“We came up with the idea for this disk some years ago,” says Dr Török. “But did not have the means to prove whether it worked. To do that we developed a precise method for calculating the properties of reflected light, partly due to the contribution of Peter Munro, a PhD student working with me on this project. We are using a mixture of numerical and analytical techniques that allow us to treat the scattering of light from the disk surface rigorously rather than just having to approximate it.”

Increasingly manufacturers are looking at miniaturising the size of optical disks, says Dr Török.

“Multiplexing and high density ODS comes in handy when manufacturers talk about miniaturisation of the disks,” he says. “In 2002 Philips announced the development of a 3cm diameter optical disk to store up to 1GB of data. The future for the mobile device market is likely to require small diameter disks storing much information. This is where a MODS disk could really fill a niche.”

Imperial College Innovations Ltd, the College’s wholly owned technology transfer company, managed and helped to prepare the patent application.

Explore further: Image: Hubble's cosmic search for a missing arm

Related Stories

Image: Hubble's cosmic search for a missing arm

November 20, 2017

This new picture of the week, taken by the NASA/ESA Hubble Space Telescope, shows the dwarf galaxy NGC 4625, located about 30 million light-years away in the constellation of Canes Venatici (The Hunting Dogs). The image, ...

'It never really leaves you.' Opioids haunt users' recovery

November 20, 2017

It's hard to say whether businessman Kyle Graves hit rock bottom when he shot himself in the ankle so emergency room doctors would feed his opioid habit or when he broke into a safe to steal his father's cancer pain medicine.

Zwicky Transient Facility sees 'first light'

November 14, 2017

A new robotic camera with the ability to capture hundreds of thousands of stars and galaxies in a single shot has taken its first image of the sky—an event astronomers refer to as "first light." The camera is the centerpiece ...

Recommended for you

Energy-saving LEDs boost light pollution worldwide

November 22, 2017

They were supposed to bring about an energy revolution—but the popularity of LED lights is driving an increase in light pollution worldwide, with dire consequences for human and animal health, researchers said Wednesday.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Mysterious deep-Earth seismic signature explained

November 22, 2017

New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones. Published in Nature, the findings could have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.