Chandra catches early phase of cosmic assembly

August 15, 2004

A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which envelopes hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution. The Marshall Center manages the Chandra program.

A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which envelopes hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution.

"We may be seeing hot intergalactic gas in a relatively pristine state before it has been polluted by gas from galaxies," said Q. Daniel Wang of the University of Massachusetts in Amherst, and lead author on an upcoming Astrophysical Journal article describing the study. "This discovery should provide valuable insight into how the most massive structures in the universe are assembled."

The complex, known as Abell 2125, is about 3 billion light years from Earth and is seen at a time about 11 billion years after the Big Bang. This is a period when astronomers believe many galaxy clusters are formed. Chandra's Abell 2125 image shows several huge elongated clouds of multimillion-degree-gas coming together from different directions. These hot gas clouds, each of which contains hundreds of galaxies, appear to be in the process of merging to form a single massive galaxy cluster.

Chandra, Hubble Space Telescope, and Very Large Array radio telescope data show that several galaxies in the Abell 2125 core cluster are being stripped of their gas as they fall through surrounding high-pressure hot gas. This stripping process has enriched the core cluster's gas in heavy elements such as iron.

The gas in the pristine cloud, which is still several million light years away from the core cluster, is conspicuous for its lack of iron atoms. This anemic cloud must be in a very early evolutionary stage. The iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms.

Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter.

Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process.

Frazer Owen (National Radio Astronomy Observatory) and Michael Ledlow (Gemini Observatory) are co-authors on the upcoming Astrophysical Journal paper. Chandra observed Abell 2125 with its Advanced CCD Imaging Spectrometer on August 24, 2001, for approximately 22 hours.

NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Additional information and images are available at: chandra.harvard.edu

Explore further: Dwarf galaxies shed light on dark matter

Related Stories

Dwarf galaxies shed light on dark matter

January 23, 2017

The first sighting of clustered dwarf galaxies bolsters a leading theory about how big galaxies such as our Milky Way are formed, and how dark matter binds them, researchers said Monday.

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...

Astronomers discover powerful cosmic double whammy

January 5, 2017

Astronomers have discovered a cosmic one-two punch unlike any ever seen before. Two of the most powerful phenomena in the Universe, a supermassive black hole, and the collision of giant galaxy clusters, have combined to create ...

Galaxy murder mystery

January 17, 2017

It's the big astrophysical whodunnit. Across the Universe, galaxies are being killed and the question scientists want answered is, what's killing them?

Recommended for you

US scientists raise bar for sea level by 2100

January 24, 2017

In the last days of Barack Obama's administration, US government scientists warned even more sea level rise is expected by century's end than previously estimated, due to rapid ice sheet melting at the poles.

Biologists unlock code regulating most human genes

January 24, 2017

Molecular biologists at UC San Diego have unlocked the code that initiates transcription and regulates the activity of more than half of all human genes, an achievement that should provide scientists with a better understanding ...

Meteorites did not enrich ocean life: study

January 24, 2017

An explosion of ocean life some 471 million years ago was not sparked by a meteorite bombardment of Earth, said a study Tuesday that challenges a leading theory.

Bursts of methane may have warmed early Mars

January 24, 2017

The presence of water on ancient Mars is a paradox. There's plenty of geographical evidence that rivers periodically flowed across the planet's surface. Yet in the time period when these waters are supposed to have run—three ...

Biologists identify reproductive 'traffic cop'

January 24, 2017

Before an egg becomes fertilized, sets of chromosomes must pair up to pass along genetic information. This happens within each reproductive cell, where separate chromosomes of male and female origin move toward each other ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.