New Way of 'Seeing': A 'Neutron Microscope'

July 30, 2004
The neutron micrograph at right (b) of a rat's foot uses false color to show differences in the number of neutrons penetrating t

A prototype microscope that uses neutrons instead of light to "see" magnified images has been demonstrated at the National Institute of Standards and Technology (NIST). Neutron microscopes might eventually offer certain advantages over optical, X-ray and electron imaging techniques such as better contrast for biological samples.

Described in the July 19 issue of Applied Physics Letters,* the imaging process involves hitting a sample with an intense neutron beam. The neutrons that pass through—whose pattern reflects the sample’s internal structure—are directed into a row of 100 dimpled aluminum plates. Each dimpled plate acts like a weak focusing lens for neutrons, diverting the neutrons’ path slightly at each interface. The image then is projected onto a detector. Adelphi Technology Inc. of San Carlos, Calif., designed and demonstrated the microscope with the help of NIST scientists, who routinely use multiple lenses to focus neutron beams for other research.

In principle, neutrons could provide better image resolution than visible light because they have shorter wavelengths—as short as 1 nanometer (nm) compared to 400-700 nm. In this demonstration at NIST’s Center for Neutron Research, the microscope produced a resolution of only 0.5 millimeters and a magnification of about 10. However, Adelphi hopes to substantially improve image resolution through research to reduce lens aberrations. The company also hopes to build a compact, laboratory-scale neutron source.

Moreover, neutrons offer some unique advantages. Unlike other imaging methods, neutrons interact strongly with hydrogen, an important component of biological samples composed mostly of hydrocarbons and water. And neutrons easily penetrate samples, thereby reducing artifacts produced with other techniques requiring thin slices, staining or fixing.

Stanford University also participated in the research, which was supported in part by the U.S. Department of Energy.

Source: NIST

Explore further: Twisting molecule wrings more power from solar cells

Related Stories

Twisting molecule wrings more power from solar cells

November 14, 2017

Inside a solar cell, sunlight excites electrons. But these electrons often don't last long enough to go on to power cell phones or warm homes. In a promising new type of solar cell, the solar-excited electrons have better ...

High field magnet at BER II: Insight into a hidden order

October 20, 2017

A specific uranium compound has puzzled researchers for thirty years. Although the crystal structure is simple, no one understands exactly what is happening once it is cooled below a certain temperature. Apparently, a 'hidden ...

Recommended for you

Energy-saving LEDs boost light pollution worldwide

November 22, 2017

They were supposed to bring about an energy revolution—but the popularity of LED lights is driving an increase in light pollution worldwide, with dire consequences for human and animal health, researchers said Wednesday.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Mysterious deep-Earth seismic signature explained

November 22, 2017

New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones. Published in Nature, the findings could have ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.