New Way of 'Seeing': A 'Neutron Microscope'

July 30, 2004
The neutron micrograph at right (b) of a rat's foot uses false color to show differences in the number of neutrons penetrating t

A prototype microscope that uses neutrons instead of light to "see" magnified images has been demonstrated at the National Institute of Standards and Technology (NIST). Neutron microscopes might eventually offer certain advantages over optical, X-ray and electron imaging techniques such as better contrast for biological samples.

Described in the July 19 issue of Applied Physics Letters,* the imaging process involves hitting a sample with an intense neutron beam. The neutrons that pass through—whose pattern reflects the sample’s internal structure—are directed into a row of 100 dimpled aluminum plates. Each dimpled plate acts like a weak focusing lens for neutrons, diverting the neutrons’ path slightly at each interface. The image then is projected onto a detector. Adelphi Technology Inc. of San Carlos, Calif., designed and demonstrated the microscope with the help of NIST scientists, who routinely use multiple lenses to focus neutron beams for other research.

In principle, neutrons could provide better image resolution than visible light because they have shorter wavelengths—as short as 1 nanometer (nm) compared to 400-700 nm. In this demonstration at NIST’s Center for Neutron Research, the microscope produced a resolution of only 0.5 millimeters and a magnification of about 10. However, Adelphi hopes to substantially improve image resolution through research to reduce lens aberrations. The company also hopes to build a compact, laboratory-scale neutron source.

Moreover, neutrons offer some unique advantages. Unlike other imaging methods, neutrons interact strongly with hydrogen, an important component of biological samples composed mostly of hydrocarbons and water. And neutrons easily penetrate samples, thereby reducing artifacts produced with other techniques requiring thin slices, staining or fixing.

Stanford University also participated in the research, which was supported in part by the U.S. Department of Energy.

Source: NIST

Explore further: Novel electron microscopy offers nanoscale, damage-free isotope tracking in amino acids

Related Stories

Cold neutrons used in hot pursuit of better thermoelectrics

November 15, 2018

Thermoelectric devices are highly versatile, with the ability to convert heat into electricity, and electricity into heat. They are small, lightweight, and extremely durable because they have no moving parts, which is why ...

Neutron pinhole magnifies discoveries at ORNL

November 16, 2018

Advanced materials are vital ingredients in products that we rely on like batteries, jet engine blades, 3-D-printed components in cars. Scientists and engineers use information about the structure and motion of atoms in ...

A new light on significantly faster computer memory devices

November 30, 2018

A team of scientists from Arizona State University's School of Molecular Sciences and Germany have published in Science Advances online today an explanation of how a particular phase-change memory (PCM) material can work ...

Recommended for you

High-energy X-ray bursts from low-energy plasma

February 19, 2019

Solar flares shouldn't produce X-rays, but they do. Why? The one-size-fits-all approach to electron collisions misses a lucky few that lead to an intense X-ray burst. Scientists thought there were too many electron-scattering ...

Breakthrough in the search for graphene-based electronics

February 19, 2019

For 15 years, scientists have tried to exploit the "miracle material" graphene to produce nanoscale electronics. On paper, graphene should be great for just that: it is ultra-thin—only one atom thick and therefore two-dimensional, ...

Observation of quantized heating in quantum matter

February 19, 2019

Shaking a physical system typically heats it up, in the sense that the system continuously absorbs energy. When considering a circular shaking pattern, the amount of energy that is absorbed can potentially depend on the orientation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.